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Abstract.   Scrypt  demonstrated  a  new  way  to  thwart  off-line  brute-force

password  guessing  attacks,  as  the  first  successful  sequential-memory-hard

password  hashing  scheme  (PHS).   While  Scrypt  forces  an  attacker  to  use

significant amounts of memory, custom ASICs can speed up Scrypt's inner loop

substantially.   Attackers  also  gain  up  to  a  4X benefit  in  time*memory cost

through a time-memory trade-off (TMTO).  With cache timing information, an

attacker can attack Scrypt in parallel  on GPUs.  TwoCats is  a new “hybrid”

sequential-memory-hard  PHS  which  is  compute  time  hardened  through

sequential  multiply operations,  limiting a  custom ASIC's speed advantage to

about 2X.  TwoCats greatly increases the time*memory cost per guess of custom

ASIC attacks,  while  greatly reducing benefits  from time-memory trade-offs.

TwoCats's  “hybrid”  design  also  provides  good  defense  against  cache  timing

attacks, without sacrificing time*memory performance.

1 Introduction

TwoCats is a sequential-memory and compute-time hard password hashing scheme (PHS)

that maximizes an attackers time*memory cost for guessing passwords.  TwoCats:

• Fills and hashes memory rapidly – ½ as fast as memmove
• Hardens runtime through sequential multiplications
• Provides strong defense against GPU, FPGA, and ASIC attacks
• Reduces time-memory trade-off options
• Defends against cache-timing attacks
• Uses parallelism for improved protection (both multithreading and SIMD)
• Offers protection in case of leaked memory
• Is suitable for desktop PCs, web servers, mobile, and embedded applications
• Supports client independent updates
• Supports server relief
• Performs well hashing many GiB of DRAM, or a few KiB of cache

SkinnyCat  is  a  compatible  subset  of  TwoCats  designed  as  a  KISS  password  hashing

scheme streamlined for ease of implementation.  SkinnyCat takes only a memory cost, hash

function, password, and salt, while TwoCats has three levels of APIs from basic to advanced.

In this paper, a memory-hard PHS which does no password derived memory addressing is

called “resistant”,  while those that do  so early in  hashing are called “unpredictable”,  and

combinations  of the two are called “hybrid”.   A  “resistant”  memory-hard  PHS  should be

immune  to cache-timing  attacks,  while  an “unpredictable”  PHS  can  be  attacked  on  a

massively parallel scale  once an attacker knows what memory addresses are accessed when

hashing a password.  A “hybrid” PHS can have some resistance against cache-timing attacks

while being as effective against brute-force attacks as an “unpredictable” PHS.  Scrypt[2] is a

“hybrid” PHS, and has better cache-timing attack resistance than if it were “unpredictable”.
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Like Scrypt, TwoCats uses a 2-loop architecture, where the first loop is “resistant”, and the

second loop is “unpredictable”.  Unlike Scrypt, both loops read two prior blocks, hash them

together, and append the result to memory, limiting an attacker's TMTO options.  Like Script,

external memory is written once, and read on average once.  A new fast memory hashing

function is employed to maximize performance.  Compared to single thread SSE optimized

Script,  single  thread  SSE optimized  TwoCats  achieves  about  a  6X speed  increase  when

hashing 2 GiB of memory.  I believe this  will  encourage users to use more memory per

password hash, increasing security.

All else being equal, TwoCats has about a 5X lower time*peak memory cost against cache-

timing attacks than  a  resistant PHS, and about a 7X lower time*average memory cost.  An

unpredictable PHS may have nearly zero time*memory cost in this case.  At the same time,

TwoCats  will  have  about  a  3.5X  higher  time*peak  memory  cost  and  a  2.3X  higher

time*average memory cost against brute force  guessing  attacks.  This is discussed  more  in

section 4.

The importance of time*memory cost can be thought of as how much memory an attacker

needs to buy per guessing core times how long that memory will be in use per guess.  Without

compute-time  hardening,  an  ASIC  attack  would  likely  be  limited  in  speed  by  memory

bandwidth.  A reasonably high end desktop PC might have 25GiB/s of memory bandwidth,

while  recent graphics cards  have up to about  250GiB/s of bandwidth.  A custom combined

DRAM and hashing chip could greatly increase memory bandwidth per hashing core giving

attackers a large advantage.

To counter this, TwoCats employs multiplication based compute-time hardening, forcing

ASIC attackers to run no more than about 2X faster than a recent PC, regardless of memory

bandwidth.  This multiplication chain will force FPGA attackers to run even slower.  Modern

GPUs are  another  matter,  requiring  rapid  small  unpredictable  memory accesses  for  good

defense.  TwoCats does in the second loop.  GPUs are discussed more in Section 3.

A second line of  compute-time hardening defense is  L1 cache bandwidth.   With  high

“repetitions”, TwoCats can achieve close to the maximum L1 cache bandwidth supported by

modern CPUs.  It is difficult for an ASIC attacker to speed up memory access to higher than

modern cache times.

TwoCats  uses  a  pluggable  hash  function  architecture,  and  currently  offers  Blake2s,

Blake2b, SHA256, and SHA512.  It runs well on both 32 and 64-bit architectures, with and

without SIMD units.

TwoCats  is  free  software.   The  source  code  for  the  reference  implementation  can  be

downloaded from:

https://github.com/waywardgeek/TwoCats
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1.1 Credits

While  I  deserve  credit  for  this  document,  my code,  and  the  inspiration  for  naming  a

password hashing scheme after my cat1, most of the good ideas found here come from the

authors of Escrypt and Catena[1], as well as several other members of the PHC email list.

The cache timing defense strategy is motivated by excellent work and generosity of ideas

from Christian Forler,  author  of  Catena,  while  many of  the other  good ideas  came from

Alexander Peslyak, aka Solar Designer, author of Escrypt.  I consider them both to be the

unofficial primary authors of this work and invite them to be listed in the top spots officially

at any time in the future.  I hope that in some ways I have helped the eventual winning entry

to be better.  In particular, any PHC author should feel free to borrow any ideas in TwoCats to

improve  their  own  entry.   I  will  feel  honored  rather  than  offended  by  entries  copying

TwoCats's multiplication chain hardening, or even significant portions of TwoCats's algorithm

directly.

TwoCats is  a substantial  improvement on my prior algorithm, NoelKDF.  All  of these

improvements were suggested by Solar Designer, and include:

• Better GPU defense through randomized sub-block hashing from the “prev” block

• Cryptographically strong hashing between SIMD “lanes”  after each block hash.  As

SolarDesigner  put  it,  there  is  no  excuse  for  chaining  a  billion  non-cryptographic

hashes together.

• Better performance through  SSE/AVX2 optimized  memory hashing,  in parallel with

scalar multiplication compute-time hardening

Solar Designer deserves both credit and blame for goading me into this massive rewrite of

NoelKDF.   His  suggestions  simultaneously  described  how  to  dramatically  improve

performance,  better  defend  against  GPU  attacks,  take  advantage  of  modern  SIMD

instructions, and how to fix my billion long non-cryptographic hash chains.

He also deserves credit  and blame for goading me to rewrite my original “keystretch”

algorithm as NoelKDF.  We discussed multiplication based compute hardening on the PHC

discussion forum, and NoelKDF was the result.  TwoCats also gains it's TMTO resistance

while  supporting  multiple  threads  from an idea  Solar  Designer  posted,  and his  posts  on

multiplication techniques as well as SSE/AVX2 heavily impacted TwoCats, not to mention

his generosity in providing access to a Core i7 Haswell machine and high memory bandwidth

Sandy Bridge server.

I  was  motivated  by  Christian  Forler's Catena  paper  to  add several  features,  including

cache-timing defense, garlic, client-independent update, a client/server relief API, and having

a pluggable cryptographic hash function.  I learned about pebbling algorithms initially from

the  Catena  paper  as  well.   I  used  his  bit-reversal  function  and  combined  it  with  Solar

1 My wife informs me that naming a PHS after our cat was actually her idea.
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Designer's  sliding power-of-two window to create the memory access pattern used in the

“resistant” first loop.

I also would like to thank the Blake2 authors.  Their efficiently optimized SSE code made

a  good  example  for  me  to  follow  while  writing  SSE  code  for  TwoCats,  and  Blake2

significantly improved the performance of TwoCats.  Colin Percival, who did such excellent

work in Scrypt, deserves credit for the whole approach.  Steve Thomas deserves credit for

pointing out  some bugs  and a  severe  weakness  in  the  first  version  of  NoelKDF,  with  a

modulo-4 attack against it,  forcing me to revise and resubmit it.   Gary Hvizdak was kind

enough  to  review of  the  NoelKDF version  of  this  paper,  which  readers  will  appreciate.

Others on the forum have also been very generous.

Given  my inexperience  in  this  field,  this  submission  is  only possible  because  of  the

generosity of those on the PHC email list.

2 Algorithm Specification

SkinnyCat is a subset of TwoCats, and is described first.  It differs from the default simple

API in TwoCats only by what default parameters are used in hashing, in order to disable many

of TwoCat's more advanced features.  As a result, compliant SkinnyCat implementation will

be far easier to implement than a compliant TwoCats implementation.

2.1 SkinnyCat

There is  a need for  a memory-hard password hashing  scheme that  is easy to  implement,

simple, and secure.  SkinnyCat attempts to provide this, while being compatible with the full

TwoCats algorithm.  Many features of TwoCats are disabled in SkinnyCat, but all of these

features can be disabled in TwoCats through the extended API to compute the same result.

SkinnyCat is offered both as an additional API in TwoCats, and as a stand-alone reference

implementation in the twocats/skinnycat directory.

SkinnyCat has only one C API:

bool SkinnyCat_HashPassword( TwoCats_HashType hashType, uint8_t hash[32],
uint8_t *password, uint32_t passwordSize,
const uint8_t *salt, uint32_t saltSize,
uint8_t memCost, bool clearPassword)

hashType is Blake2s or SHA256.  A 32-byte hash is returned.  Adding hash types is simple,

for any hash function that can generate 256 bit results.  The memory hashed is 1024*2memCost.

If clearPassword is set, the password is cleared once the pseudo-random key is derived, and

before memory hashing begins.
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SkinnyCat Algorithm:

# Password and salt have length < 256, and memCost <= 30
Inputs: H, uint8 password[], uint8 salt[], uint8 memCost
Output: uint8 hash[32]

# Choose smaller blocklen for smaller memCost values
blocklen = 4096
while blocklen > 8 && memlen/blocklen < 256:

blocklen >>= 1

# Extract PRK.  Constants are for compatibility w/ TwoCats
PRK[0 .. 7] = decodeLittleEndian(H(passwordSize || saltSize || 0u || blocklen*4 || blocklen*4 ||

memCost || 0b || 0b || 8b || 1b || 0b || password || salt))

# Allocate memory
memlen = (1024*2^memCost)/4
uint32 mem[0 .. memlen-1]

# Initialize state, separated from PRK by H
uint32 state[8] = hashState(PRK, 0)

# Initialize first block
mem[0 .. blocklen-1] = expand(H, blocklen, state)

# Hash without password dependent addressing
prevAddr = 0
toAddr = blocklen
for i = 1 .. memlen/(2*blocklen)-1:

a = state[0] # For compatibility w/ TwoCats
fromAddr = slidingReverse(i)*blocklen
for j = 0 .. blocklen/8-1:

for k = 0 .. 7:
state[k] = (state[k] + mem[prevAddr++]) ^ mem[fromAddr++]
state[k] = ROTATE_LEFT(state[k], 8)
mem[toAddr++] = state[k]

state = hashState(state, a)

# Hash with password dependent addressing
for i = memlen/(2*blocklen) .. memlen/blocklen-1:

a = state[0] # For compatibility w/ TwoCats
fromAddr = (i - 1 - distanceCubed(i, state[0]))*blocklen
for j = 0 .. blocklen/8-1:

for k = 0 .. 7:
state[k] = (state[k] + mem[prevAddr++]) ^ mem[fromAddr++]
state[k] = ROTATE_LEFT(state[k], 8)
mem[toAddr++] = state[k]

state = hashState(state, a)
addIntoHash(PRK, state)
# One extra hash for compatibility with TwoCat's server relief
output H(H(encodeLittleEndian(state)))
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Expand is a loop around hashState to fill memory with pseudo-random data derived from

state in counter mode.

hashState is just decodeLittleEndian(H(encodeLittleEndian(state || a)).  The slidingReverse

function is:

slidingReverse(i):
reversePos = reverse(i, numBits-1)
if reversePos + (1 << (numBits(i)-1)) < i:

reversePos += 1 << (numBits-1)
return reversePos

The function reverse is just the bit-reversal function.  For example reverse(b1011000, 6) is

b000110.

distanceCubed  simply chooses a random  distance  back in memory of size  i*rand(0..1)3.

The integer based aproximation is:

v = state[0]
v2 = v*v >> 32
v3 = v*v2 >> 32
distance = (i-1)*v3 >> 32

AddIntoHash simply adds the 8 values of state to the 8 values of PRK.  After that, two

cryptographic hashes are performed in sequence to generate the result.  The reason for two

rather than just one is that in server relief mode, a TwoCats client will transmit a hashed

password to the server without the final hash being applied.

A  simple  SkinnyCat  reference  implementation  can  be  found  in  the  twocats/skinnycat

directory.  SkinnyCat mode can be used with the twocats executable using the -a skinnycat

parameter.

2.2 TwoCats

Three levels of  flexibility are supported  in the API: the default TwoCats_HashPassword, a

fuller  interface  called  TwoCats_HashPasswordFull,  and  a  bare  metal  API  called

TwoCats_HashPasswordExtended.  A SkinnyCat API is also provided.

Some users may be confused if there are multiple work parameters, such as memCost and

timeCost.   To help  them succeed,  the  default  API takes  only a  memCost  plus  the  usual

password and salt, and returns a 32-byte hash value.  This API differs from SkinnyCat in that

several  additional  security  features  are  enabled,  including  multiplication  compute-time

hardening, multithreading, improved GPU defense, support for 512-bit hash functions, and

overwriting early memory to provide some protection in case of memory leaks to attackers.

Users who are more comfortable specifying time, memory, and parallelism can use the full

API, while expert users can control every low level parameter,through the extended API.

These C APIs are:
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bool TwoCats_HashPassword( TwoCats_HashType hashType, uint8_t *hash,
uint8_t *password, uint32_t passwordSize,
const uint8_t *salt, uint32_t saltSize,
uint8_t memCost, bool clearPassword)

bool TwoCats_HashPasswordFull( TwoCats_HashType hashType, uint8_t *hash,
uint8_t *password, uint32_t passwordSize,
const uint8_t *salt, uint32_t saltSize,
uint8_t memCost, uint8_t timeCost,
uint8_t parallelism, bool clearPassword)

bool TwoCats_HashPasswordExtended( TwoCats_HashType hashType, uint8_t *hash,
uint8_t *password, uint32_t passwordSize,
const uint8_t *salt, uint32_t saltSize,
uint8_t *data, uint32_t dataSize,
uint8_t startMemCost, uint8_t stopMemCost,
uint8_t timeCost, uint8_t multiplies,
uint8_t lanes, uint8_t parallelism,
uint32_t blockSize, uint32_t subBlockSize,
uint8_t overwriteCost,
bool clearPassword,  bool clearData)

For all of these functions, these are the restrictions on sizes:

hash is 32 or 64 bytes, depending on the selected hashType
memCost <= 30
timeCost <= 30
multiplies <= 8
1 <= prallelism <= 255
startMemCost <= stopMemCost <= 30
oldMemCost < newMemCost <= 30
32 <= subBlockSize <= blockSize <= 2^20 -- both must be powers of 2
1 <= lanes <= hashType size/4 (for example, 8 for SHA256)

NULL values and 0 lengths are legal for all variable sized inputs.  Lengths for NULL 
values must be 0.

Initially supported hash types are:

• TWOCATS_BLAKE2S
• TWOCATS_BLAKE2B
• TWOCATS_SHA256
• TWOCATS_SHA512

New hash primitives can easily be added to TwoCats.
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Preferably, passwords and any other secret data are passed in fixed sized buffers.  This

insures that the hash primitive can not leak any length information.

Preferably clearPassword is set to true so that the password buffer can be overwritten with

0's at the beginning of hashing rather than by the user afterward.

All of these functions return true on success, and false if there is a memory allocation error.

Each increment of memCost doubles difficulty.  The memory hashed = 2^memCost KiB.

For the full and extended APSs, the inner loop of hash blocks is repeated 2^timeCost times,

and the resulting hash block is written in the last iteration.  This supports L1 cache bandwidth

runtime  hardening,  since  an  attacker  will  have  difficulty building  significantly faster  L1

caches, even on a custom ASIC.

2.3 The Extended API

The extended API is for those who know what they are doing.  To help, an API for guessing

good parameters is provided to help choose memCost, timeCost, multiplies, and lanes for the

user's machine.

The  data  parameter  can  be  any application  specific  data,  such as  a  secondary key or

application name, or a concatenation of various data.  It is treated as sensitive data, just like

the password.

startMemCost  is  normally  equal  to  stopMemCost,  unless  a  password  hash  has  been

strengthened using TwoCats_UpdatePassword (client independent update).

stopMemCost  is  the  main  memory  hashing  difficulty  parameter,  which  causes

2^stopMemCost KiB of memory to be hashed.  Each increment doubles memory hashed.

timeCost causes the inner loop to repeat 2^timeCost times, repeatedly hashing blocks that

most likely fit in on-chip cache.  It can be used to increase runtime for a given memory size,

and to reduce DRAM bandwidth while increasing cache bandwidth.  For memory sizes large

enough to require external DRAM, it is ideally set as high as possible without increasing

runtime significantly. For memory sizes that fit in on-chip cache, timeCost needs to be set

high enough to provide the desired runtime security.

multiplies is used to force attackers to run each guess as  almost as  long as you do.  It

should be set as high as possible without increasing runtime significantly.  2 is a reasonable

default for hashing memory sizes larger than the CPU cache size, 1 is reasonable for L2/L3

cache  sizes,  and  0  may  be  required  for L1  cache  sizes.   For  CPUs  without  hardware

multiplication  or  on-chip  data  cache,  multiplies  should  be  set  to  0  to  aid  in  memory

bandwidth defense.

lanes is used to make use of SIMD parallelism available on the CPU, such as SSE2 and

AVX2.  Older CPUs without any SIMD unit should set lanes to 1.  Sandy Bridge and Ivy

Bridge Intel processors run best with lanes set to 4.  Haswell runs best with lanes set to 8.
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Parallelism is the number of threads used in parallel to hash the password.  A reasonable

number is half the CPU cores you expect to have idle at any time, but it must be at least 1.

Each thread hashes memory so fast,  memory bandwidth will  likely max out  with only 2

threads.  Higher values can be used on multi-CPU servers with more than two memory banks

to increase password security.

OverwriteCost  determines  how much early memory to  overwrite.   In  case  memory is

flushed to disk for some reason, unless this happens during the very first part of hashing an

attacker will have to still compute the early memory for each guess.  1 means hash as much

memory as used for hashing, and each increment reduces this by half.  The default of 6 leads

to about a 3% increase in runtime, and the first 3% of memory is overwritten.  0 disables this

feature.

If clearPassword is true, the password is set to 0's early in hashing, and if clearData is set,

the data input is set to 0's early in hashing.

2.4 Additional APIs

A system administrator can update an existing password hash to a more difficult  level of

memCost using TwoCats_UpdatePassword:

bool TwoCats_UpdatePassword(TwoCats_HashType hashType, uint8_t *hash,
uint8_t oldMemCost, uint8_t newMemCost, uint8_t timeCost,
uint8_t multiplies, uint8_t lanes, uint8_t parallelism, uint32_t blockSize,
uint32_t subBlockSize)

Server relief is supported through an extended password hashing API that splits the hash

into a client-side compute intensive hash called TwoCats_ClientHashPassword, and a server-

side low-CPU effort hash called TwoCats_ServerHashPassword:

bool TwoCats_ClientHashPassword(TwoCats_HashType hashType, uint8_t *hash,
uint8_t *password, uint32_t passwordSize, const uint8_t *salt,
uint32_t saltSize, uint8_t *data, uint32_t dataSize, uint8_t startMemCost,
 uint8_t stopMemCost, uint8_t timeCost, uint8_t multiplies, uint8_t lanes,
uint8_t parallelism, uint32_t blockSize, uint32_t subBlockSize,
uint8_t overwriteCost, bool clearPassword, bool clearData)

bool TwoCats_ServerHashPassword(TwoCats_HashType hashType, uint8_t *hash,
uint8_t hashSize)

Users can find decent parameter settings for their machine for a given desired runtime and

maximum memory using the TwoCats_FindCostParameters API:

void TwoCats_FindCostParameters(TwoCats_HashType hashType,
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uint32_t milliSeconds, uint32_t maxMem, uint8_t *memCost,
uint8_t *timeCost, uint8_t *multplies, uint8_t *lanes)

2.5 TwoCats Upgrades

TwoCats provides several new features over SkinnyCat (with credits for idea sources):

1. Introduce a sequential multiplication chain to compute-time harden the algorithm 
against ASIC attacks (Solar Designer & Bill Cox)

2. Introduce small unpredictable reads to thwart GPU attacks (Solar Designer)
3. Introduce repetitions to increase compute time and L1 cache bandwidth for memory-

limited systems (Solar Designer & Bill Cox)
4. Introduce “lanes” parameter to best take advantage of SIMD unit parallelism (Solar 

Designer)
5. Introduce thread level parallelism to take advantage of multi-core CPUs (Scrypt)
6. Introduce inter-thread memory hashing to thwart TMTOs (Solar Designer)
7. Introduce client-independent update (Catena)
8. Protect against memory leaking to attackers by overwriting early memory (Bill Cox)

Every one of these enhancements either increases speed or improves security.  Since the

security of a memory-hard PHS can be in part measured by it's time*memory cost, increasing

speed also increases security, since it allows us to hash more memory.  Similarly, increasing

CPU time through repetitions also increases security.

2.6 Multiplication-Hard Hash Function

Speeding up multiplication on custom ASICs versus modern CPUs is difficult, and unlikely to

result in a significant speed-up.  In comparison, the Salsa20/8 hash function used in Scrypt[2]

is likely to run at about 1 or 2 nanoseconds per Salsa20/8 round per core on a 28nm custom

ASIC.   Solar  Designer's  SSE  optimized  version  of  scrypt  on  my  development  machine2

hashes 2GiB twice in 2.71 seconds, which is about 30X slower.  Salsa20/8 has only 16 levels

of ADD/XOR logic per 32-bit register, of which there are 16, making about as complex as 16

Booth-encoded 32x32 → 64 multipliers running in parallel.

In contrast, TwoCats is hardened against ASIC attacks through the use of a multiplication-

hard hash function, which cannot be substantially sped up, even on a carefully optimized

custom ASIC.   Each iteration depends on the previous,  and must  be computed with one

sequential multiply followed by one sequential XOR.  A lower bound on the runtime is:

T (memlen)≥memlen×multTime×multsPerByte

On my development machine, a 32x32 → 64 multiply operation has latency multTime =

0.88ns.  Hashing 2GiB of data this way with 8 serial  multiplications per 32-bytes would

require a minimum of 0.88ns*231*8/32 = 0.47 seconds.  TwoCats performs this calculation in

0.83 seconds, which corresponds to being 57% multiplication compute-time hardened.

Definition: Multiplication-Hard Hash Function

2 My “development machine” is my son's 3.4 GHz quad-core i7-3770 Manjaro Linux MineCraft server.
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A multiplication-hard hash function is  a hash function that sequentially computes values

using  no  more  than  a  1-to-3 ratio  of  sequential  multiplication  operations  to simple

operations, where simple operations are the usual single-cycle ALU operations such as: add,

sub, XOR, AND, OR, complement, increment, decrement, and shift/rotate.

The  reason  for  the  choice  of  1-to-3  is  that  current  advanced  Intel,  AMD,  and  ARM

processors have either 3 or 4 clock cycle latencies to compute a 32x32->64 multiplication,

while all of the simple operations are computed in 1.  This means in a multiplication-hard

hash  function,  it  should  be  possible  to  spend  at  least  50%  of  the  compute  time  on

multiplications,  assuming  other  operations  can  execute  in  parallel.   TwoCats  has  a

multiplication  to  simple  operation  ratio  of  1-to-1.   It  does  one  multiply and  one  XOR

sequentially, twice in every loop.

The TwoCats hash function below implements upgrades 1-4 mentioned above:

hashBlocks(H, uint32 state[], uint32 mem[], uint32 blocklen, uint32 subBlocklen,
uint64 fromAddr, uint64 prevAddr, uint64 toAddr,
uint8 multiplies, uint32 repetitions, uint8 lanes):

numSubBlocks = blocklen/subBlocklen
a = state[0]
b = state[1]
c = state[2]
d = state[3]
for r = 0 .. repetitions-1:

for i = 0 .. numSubBlocks-1:
randVal = mem[fromAddr]
p = prevAddr + subBlocklen*(randVal & (numSubBlocks – 1))
for j = 0 .. subBlocklen/lanes - 1:

# Compute the multiplication chain, preferably in CPU registers
for k = 0 .. multiplies:

a ^= (uint64_t)b*c >> 32
b += c
c ^= (uint64_t)a*d >> 32
d += a

# Hash lanes of memory, preferably in the SIMD unit
for k = 0 .. lanes-1:

state[k] = (state[k] + mem[p++]) ^ mem[fromAddr++]
state[k] = (state[k] >> 24) | (state[k] << 8)
mem[toAddr++] = state[k]

H.HashState(state, v)

On machines supporting SSE or AVX2, the multiplication computations occur in CPU

registers, and run in parallel with the memory hashing loop, which is done in the SSE/AVX2
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unit.  This hash function can compute from 0 to 16 32x32->64 multiplies per inner loop, in

parallel  with  hashing 4*lanes bytes of memory.  A block is 4096 32-bit values by default.

When this function is called in the first “resistant” loop, subBlocklen is set to blocklen, since

predicable sub-block hashing gains us little.  In the second “unpredictable” loop, subBlocklen

is 16 which causes modern GPUs some difficulty.  After the new hashed block is written to

memory, H is used to mix bits between the state registers.

2.7 The “Resistant” loop

To provide stronger resistance against offline brute-force guessing attacks, TwoCats runs an

“unpredictable” second loop called “hashWithPassword”.

hashWithoutPassword(H, uint32 state[], uint32 mem[], uint32 p, uint64 blocklen,
uint32 blocksPerThread, uint32 multiplies, uint32 repetitions,
uint8 lanes, uint32 parallelism, uint32 completedBlocks):

uint64 start = blocklen*blocksPerThread*p
uint32 firstBlock = completedBlocks
if completedBlocks == 0:

# Initialize the first block of memory
mem[start .. start + blocklen-1] = H.ExpandUint32(blocklen, state)
firstBlock = 1

# Hash one "slice" worth of memory hashing
numBits = 1
for i = firstBlock .. completedBlocks + blocksPerThread/SLICES - 1:

while 1 << numBits <=i:
numBits++

# Compute the "sliding reverse" block position
reversePos = reverse(i, numBits-1)
if reversePos + (1 << (numBits-1)) < i:

reversePos += 1 << (numBits-1)
uint64 fromAddr = blocklen*reversePos

# Compute which thread's memory to read from
if fromAddr < completedBlocks*blocklen:

fromAddr += blocklen*blocksPerThread*(i % parallelism)
else:

fromAddr += start

uint64 toAddr = start + i*blocklen
uint64 prevAddr = toAddr - blocklen
hashBlocks(H, state, mem, blocklen, blocklen, fromAddr, prevAddr, toAddr,

multiplies, repetitions, lanes)
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This function is called SLICE/2 number of times, where SLICE is 4.  This is because we

execute this function from “parallelism” threads (when pthreads are enabled).  It is desirable

to allow one thread to hash another thread's memory into it's hash block in order to force

attackers to keep all the thread memory loaded at once, rather than running them sequentially

with only one thread's memory loaded at a time.  Since threads do not run at the same speed,

memory for each thread is broken into SLICE slices, and we run “parallelism” threads in

parallel to generate one slice of hashed memory, and then join the threads.

This  function  finds  the  prior  block  to  hash  using  the  “sliding  power  of  2”  window

suggested by Solar Designer, with a bit-reversal addressing pattern from Catena.  This tested

most  resistant to  cache timing attacks in my benchmarks.   This is  discussed more in  the

Efficiency section below.

2.8 The “Unpredictable” Loop

The unpredictable loop follows execution of the resistant loop.  This loop provides TwoCats

it's  “sequential-memory-hardness”.  Its primary purpose is  providing solid defense against

offline brute-force guessing attacks.  Because an attacker cannot know what address will be

accessed in the immediate future, he risks considerable recomputation if he tries to implement

a TMTO attack with ¼ memory or less.  Also, the unpredictability of this loop keeps him

from using parallel cores to recompute values before they are needed.  A “resistant” PHS has

a simple “free” ½ memory TMTO which results  in  zero recomputations,  and typically ¼

memory TMTO attacks have few recomputations.  This loop gives an attacker no such free

ride.

The function is:

hashWithPassword(H, uint32 state[], uint32 mem[], uint32 p, uint64 blocklen,
uint32 subBlocklen, uint32 blocksPerThread, uint32 multiplies,
uint32 repetitions, uint8 lanes, uint32 parallelism, uint32 completedBlocks):

uint64 start = blocklen*blocksPerThread*p;

# Hash one "slice" worth of memory hashing
for  i = completedBlocks .. completedBlocks + blocksPerThread/SLICES - 1:

# Compute rand()^3 distance distribution
uint64 v = state[0]
uint64 v2 = v*v >> 32
uint64 v3 = v*v2 >> 32
uint32 distance = (i-1)*v3 >> 32

# Hash the prior block and the block at 'distance' blocks in the past
uint64 fromAddr = (i - 1 - distance)*blocklen

# Compute which thread's memory to read from
if fromAddr < completedBlocks*blocklen:
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fromAddr += blocklen*(state[1] % parallelism)*blocksPerThread
else:

fromAddr += start

uint64 toAddr = start + i*blocklen
uint64 prevAddr = toAddr - blocklen
hashBlocks(H, state, mem, blocklen, subBlocklen, fromAddr,

prevAddr, toAddr, multiplies, repetitions, lanes)

This function differs from the simplified version of TwoCats in that instead of selecting a

prior  block  to  hash  uniformly,  it  biases  selection  to  more  recently generated  blocks.   If

uniform were used,  the average distance would be i/2.   With this  cubed distribution,  the

average is i/4, which is still very good, and at the same time the number of very short edges is

greatly increased.  Short edges cause an attacker more recomputations than long edges if he

has dropped blocks from memory.  This is discussed more in the Efficiency section.

The average edge length from node i is computed as:

l=i∫
0

1

x3 dx=
1
4

i

2.9 Thread Management

The function hashMemory initializes thread states, and launches the threads once per slice,

first on hashWithoutPassword, and then hashWithPassword.  In comparison, pepper can take

advantage of multiple CPU cores, but not without giving an attacker a simple TMTO.  The

function is:

hashMemory(H, uint32 hash32[], uint32 mem[], uint8 memCost, uint8 timeCost,
uint8 multiplies, uint8 lanes, uint8 parallelism, uint32 blockSize,
uint32 subBlockSize, uint32 resistantSlices):

memlen = (1024/4) << memCost
blocklen = blockSize/4
subBlocklen = subBlockSize/4
blocksPerThread = TWOCATS_SLICES*(memlen/

(TWOCATS_SLICES * parallelism * blocklen))
repetitions = 1 << timeCost

# Initialize thread states
uint32 states[H.len*parallelism] = H.Expand32(H.len*parallelism, hash32)

for slice = 0 .. SLICES - 1:
for p = 0 .. parallelism-1:

if slice < resistantSlices:
state = states[p*H.len .. (p+1)*H.len-1]
hashWithoutPassword(H, state, mem, p, blocklen,

blocksPerThread, multiplies, repetitions, lanes,
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parallelism, slice*blocksPerThread/SLICES)
else:

hashWithPassword(H, state, mem, p, blocklen,
subBlocklen, blocksPerThread, multiplies, repetitions,
lanes, parallelism, slice*blocksPerThread/SLICES)

# Apply a crypto-strength hash
addIntoHash(H, hash32, parallelism, states)
hash32 = H(hash32)

This  heuristic  hides  the  complexity  of  choosing  reasonable  values  for  blocklen  and

blocksPerThread, from the user, simplifying the API.

The function addIntoHash simply adds the state vectors computed during hashing hash32.

Expand then computes the output hash from hash32 using a cryptographically secure hash

function.

2.10 Garlic (aka memCost)

The  final  upgrade  is  adding  Catena  style  “garlic”  and  protecting  against  memory leaks.

Catena's  “garlic”  which  I  implemented  in  TwoCats,  enables  a  feature  called  “client

independent  update”.   What  this  does  is  make  it  possible  for  a  system administrator  to

increase the hashing difficult of any password in his database at any time, without having to

know the password.  Basically, it's just a wrapper around hashMemory which calls it over and

over with increasing memCost.  If an administrator wants to increase difficulty, he can simply

call TwoCats with startMemCost == oldMemCost, and stopMemCost == desiredMemCost.

The output from hashMemory is the input to the next  call  to hashMemory with 1 higher

memCost.

This loop also is a good place to deal with a major security issue in memory-hard PHSs:

attackers have a much higher chance of gaining access to leaked memory, enabling them to

abort incorrect password guesses early.  Because memory-hard PHSs are so memory hungry

and run for so long, they can segv, get swapped to disk during hibernation or if memory is

full, the process might core dump, or a compromised peripheral might have enough time to

detect the password hashing in progress and somehow gain access to RAM data, possibly

through DMA.

To reduce the chance of leaking the most critical earliest memory to attackers, TwoCats

overwrites 1/32nd of memory, in increasing levels of memCost.  This causes the first 1KiB to

be hashed, then overwritten, then 2 KiB, then 4 KiB, and so on until 1/64th  of memory is

filled.  At this point, TwoCats jumps ahead to the user's specified startMemCost and applies

levels of garlic the same way Catena does.  This slows down the algorithm about 3%, but the

extra protection warrants this performance hit.

The TwoCats main hash function is:
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bool TwoCats(H, uint32 hash32[], uint8 startMemCost, uint8 stopMemCost,
uint8 timeCost, uint8 multiplies, uint8 lanes, uint8 parallelism,
uint32 blockSize, uint32 subBlockSize, uint8 overwriteCost):

uint32 mem[(1024 << stopMemCost)/4]

# Iterate through the levels of garlic.  Throw away some early memory to reduce the
# danger from leaking memory to an attacker.
for i = 0 .. stopMemCost-1:

if i >= startMemCost || i < overwriteCost:
if (1024 << i)/(parallelism*blockSize) >= TWOCATS_SLICES:

resistantSlices = SLICES/2
if i < startMemCost:

resistantSlices =  SLICES
hashMemory(H, hash32, mem, i, timeCost, multiplies, lanes,

parallelism, blockSize, subBlocksSize, resistantSlices)
if i != stopMemCost:

# Not doing the last hash is for server relief support
hash32 = H(hash32)

# The light is green, the trap is clean
return true

This simple outer wrapper provides support for client independent updates, server relief,

and memory leak protection.

3 Security Analysis

Except for TwoCat's complexity, there are reasons to believe its design secure.  Analysis of

SkinnyCat  may benefit  the more difficult  analysis  of TwoCats.   The analysis  of TwoCats

security will be covered in detail in this section.

There are many security measures by which to judge an algorithm.  Breaking them down,

the first category is “critical” features, which if circumvented would be disastrous for any

passwords still protected by the algorithm.  Since this is an analysis of a memory-hard PHS,

critical features also include memory-hard specific features that if compromised would render

the algorithm susceptible to massively parallel attacks without the memory cost.  Then comes

“important”  features,  which  would  somehow limit  the  effectiveness  of  an  algorithm  if

circumvented.

Critical features include:

• The derived key cannot be reversed to reveal the password with significantly fewer

guesses than brute-force

• “The hash should behave randomly with respect to any of its input” - PHC FAQ
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• The time*memory cost cannot be significantly reduced, forcing an attacker to devote a

comparable amount of resources as the defender for each password guess

In this context, “significantly reduced” and “significantly fewer” are fuzzy, but striving for

no more than a 10X cost advantage per guess for an attacker is a good goal for a memory-hard

PHS.  Any algorithm showing 10,000X or more cost advantage for an attacker should be

avoided,  as  better  algorithms exist.   This  includes  defense against  attackers  using GPUs,

FPGAs, and custom ASICs.

Important features include:

• Low flexibility in TMTO attacks

• Cache timing attack resistance, through password independent memory addressing

• Defense against modern GPU architectures

• Simplicity, enabling better cryptanalysis and more secure implementations

• Resistance to memory leak attacks such as when memory is written to swap

TwoCats addresses all of these needs other than simplicity, while SkinnyCat loses some

resistance to GPU attacks and memory leaks, and has lower compute-time hardness, but it

gains simplicity.

3.1 Key Reversal and Derived Key Randomization

TwoCats and SkinnyCat use an extract function motivated from HKDF[9] at the start of the

algorithm to derive a cryptographic pseudorandom key from the input data.  Every single

input, assuming startMemCost == stopMemCost, is passed to  extract, including sizes of all

variable sized data, making the initial key derivation in TwoCats “strongly secure”, according

to Yao and Yin's definition[10].

hash32 = extract(hashType, saltSize || passwordSize || password || dataSize || data ||
 startMemCost || timeCost || multiplies || parallelism || blockSize ||
subBlockSize)

When startMemCost < stopMemCost, the first iteration of memory cost is strongly secure,

and the rest are simply client-independent updates made without knowledge of the password,

making  them  more  computationally  difficult.   Attacks  such  as  the  chosen-c  attack  on

PBKDF2 are not possible when all the inputs are hashed upfront.  Also, input collisions such

as  PBKDF2  has  when  adding  additional  0's  to  short  passwords,  or  when  hashing  long

passwords, cannot happen in TwoCats because the password length is hashed upfront

The  initially  supported  hash  functions  are  Blake2s,  Blake2b,  SHA256,  and  SHA512.

There is no known way of reversing the key for any of these which is easier than guessing the

input to the secure hash function which generated the output.  In addition, H is called again at
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the end of the algorithm with only the final hash as input.  In between, memory hashing and

multiplication-intensive hashing strive to lose little entropy.  The result  is isolated from the

initial key by an application of the cryptographic hash, and at the end is added into it, after

which the result is hashed one more time to insure good isolation, and one more time to

support server relief.

3.2 Memory Hardness

Scrypt  appears  to  have  a  hardened  time*memory cost  of  about  ¼  for  an  attacker  vs

defenders.  To achieve this, an attacker reduces memory by a high factor, and increases his

compute effort by a bit more than ¼ of this factor.  No better TMTO attack is currently known

against Scrypt.

TwoCats starts with this level of time*memory cost hardening and enhances it by limiting

an attacker's TMTO options.   Each hashed memory block depends on the previous  as in

Scrypt, and also on a randomized prior block, frustrating the DAG-cut attack used  against

Scrypt by increasing the data in any DAG cut to a number comparable to the graph size – the

mid-cut is about 18% of the number of nodes in the computation DAG.  A feasibleTMTO

attack has been identified, which reduce time*cost by about 10%, though the complexity of

memory tracking in this attack limits it's usefulness to an attacker.  In this attack, the fact that

memory locations near the end of each loop have low probability of being accessed is used to

save some memory with  a  low recomputation cost.   The TMTO hardness of TwoCats  is

further discussed in the Efficiency Analysis section.

3.3 Secure Memory Hash Function

It may be simpler to focus on two separate functions performed in  hashBlocks: memory

hashing, and compute-time hardening.  Memory hashing is not impacted by the multiplication

chain computation, and when this is removed, we get a simpler memory-hashing only loop

that writes the same data to memory:

for i = 0 ..  numSubBlocks-1:
randVal = mem[f]
p = prevAddr + subBlocklen*(randVal & mask)
for j = 0 .. subBlocklen/8 – 1:

for k = 0 .. 7:
state[k] = (state[k] + mem[p++]) ^ mem[fromAddr++]
state[k] = ROTATE_LEFT(state[k], 8)
mem[toAddr++] = state[k]

The memory hash function is designed to be fast, SIMD friendly, lose negligible entropy,

and to force an attacker to compute mem[0 .. i-1] before he can compute mem[i].  It uses

addition, rotation, and XOR (ARX)[7].  These are the primitives behind several popular fast

cryptographically  strong  hash  functions,  including  SHA-3  competitors  Skein,  Blake,

CubeHash, and Salsa20[7].  These operations are not combined in a manner to insure hashing

cryptographically secure, but they still have to be computed, which is what counts.
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The memory being hashed into the state is separated by at least one application of the

cryptographically strong hash function H, and many rounds  of memory block hashing are

applied.  It is important that the hash function  lose little entropy, which is assured by the

reversible ARX operations.  The data written to memory passes the dieharder tests, and the

number of 32-bit collisions in the data written to memory is as expected.

It is critical to force an attacker to compute each memory location's value, and to have no

short-cuts  that  allow  mem[i]  to  be  computed  without  first  computing  mem[0..i-1].

Confidence that this is the case comes from the similarity of this hash function to other ARX

hash functions.

3.4 Hardened Compute Time Cost

TwoCats introduces the concept of multiplication based compute-time hardening of a PHS.

By sequentially calling a hash function dominated by the runtime of serial multiplications, an

attacker is forced to spend a comparable time computing the TwoCats hash function as the

defender, even on a custom ASIC.

What matters in the multiplication hardened hash function is that the attacker needs to be

forced  to  compute  the  multiplications  sequentially,  and  there  should  be  as  little  non-

multiplication  computation  as  possible.   The  interesting  portion  of  the  hashing  loop  for

multiplication hashing:

a = state[0]
b = state[1]
c = state[2]
d = state[3]
for i = 0 ..  numSubBlocks-1:

for j = 0 .. subBlocklen/8 – 1:
for k = 0 .. 7:

a ^= (uint64_t)b*c >> 32
b += c
c ^= (uint64_t)a*d >> 32
d += a

hashState(state, v)

The variables a through d are allocated in regular CPU registers, while the state variables

are loaded into SSE/AVX2 registers.  The memory hashing function runs very well on SSE

and AVX2 SIMD units in Sandy Bridge, Ivy Bridge, and Haswell CPUs.  At the end of the

loop, the resulting value of a and the state is hashed with Blake2s.

If  addition  were  used  rather  than  bitwise  XOR,  then  the  multiplications  could  be

distributed, and parallel computation could be used to accelerate computation.  Since XOR

does not distribute with multiplication, the multiplications must be computed sequentially.
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3.5 Cache Bandwidth Hardening

In addition to compute-time hardening through sequential multiplies, TwoCats has a timeCost

parameter, which causes it's 16 KiB block hashes to be repeated 2^timeCost times, but results

are only written on the last iteration, which works well with write-through caches.  With high

timeCost values, bandwidth to L1 cache can be very high.  As benchmarks show, about 79

GiB/s can be sustained to L1 cache using this parameter with one thread on Intel Haswell

CPUs, or about 36% of the theoretical maximum, and 57 GiB/s on Ivy Bridge, or 52% of the

maximum  possible.   This  represents  yet  another  barrier,  in  addition  to  multiplication

compute-time hardening, which will make it difficult for ASIC attackers to significantly speed

up attacks on TwoCats.

3.6 GPU, FPGA, and ASIC Attack Resistance

GPUs naturally run with long instruction latency, and the multiplication chain will perform

only a bit worse than an addition chain.  There are two approaches to defeating graphics card

attacks.  First, use a lot of memory.  Scrypt runs at near parity with GPUs at around 4MiB,

and at 1GiB, Scrypt is not practical to attack with GPUs.  However, Bcrypt runs at parity with

GPUs  in  only  4KiB  of  memory.   The  difference  is  the  way  Bcrypt  does  many  small

unpredictable reads in series, which GPUs do poorly.  TwoCats includes similar small random

reads in the second loop (but not the first), which by default is 64 bytes compared to Bcrypt's

16.   Exactly  where  TwoCats  achieves  memory  parity  with  GPUs  has  not  yet  been

benchmarked, but I expect it to be in between that of Scrypt and Bcrypt.

Against ASICs, TwoCats deploys a multiplication computation time hardened inner loop.

A custom  ASIC  in  the  same  technology node  as  a  modern  CPU  should  not  have  any

advantage  in  the  speed  of  multiplication.   TwoCats's  inner  loop  is  typically  about  50%

dominated by multiplication, meaning an ASIC attacker has to spend about 50% as long as

the defender computing the hash.  This is a dramatic improvement over prior algorithms that

only use addition, rotation, and XOR in their hashing loops.

FPGAs will fare even worse from the multiplication computation time hardening, due to

slower clock cycles, and multiple clocks per 32-bit multiplication.

3.7 Memory Leak Attacks

The single greatest weakness in memory-hard PHSs is likely what happens when an attacker

gains accessed  to  hashed  memory.   Writing  password  derived  data  to  large  amounts  of

memory greatly increases the odds that password derived data will be leaked to an attacker,

through  swap,  hibernation,  memory recycling  without  reinitialization,  core  dumps,  DMA

transfers  to  a  compromised  device,  etc.   With  this  data,  an  attacker  can  abort  incorrect

password  guesses early, and mount a massively parallel attack with little time  and memory

per guess.

TwoCats  provides  some resistance  against  memory leaks  by overwriting  early hashed

memory.  It repeatedly hashes memory with the “resistant” hash algorithm, starting with just
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256 blocks, and increases the size by a factor of two until it reaches at least 1/64th of memory.

After that, it starts from scratch, doing the “resistant” first loop on the first half of memory,

followed by the “unpredictable” second loop on the second half of memory.  The compute

overhead is roughly 1/32 or about 3%.

This algorithm initially presents a minimal attack surface to an attacker.  If memory leaks

after this phase has completed, an attacker will potentially gain a 2048X time*cost reduction,

or about 11 bits of strength.  With a TMTO additional attack, memory can be cut another 4X,

leading to a 13 bit combined loss in password strength.  I feel this is a reasonable trade-off for

a 3% increase in runtime.

3.8 Cache-Timing-Attack Resistance

The first loop does no memory lookups that in any way depend on the password.  If a cache-

timing signature is leaked to an attacker, it could be used to abort an incorrect password guess

at the start of the second loop.  The first loop takes about half of the runtime, so an attacker

gains a 2X improvement in guessing speed.  Like all the cache-timing resistant algorithms I

tested, the first loop has a low recomputation penalty for attackers using about ¼ memory

compared to the DAG size.  The “sliding reverse” algorithm used showed a 3X recomputation

penalty for an attacker using only ¼ memory, which was the best  defense of all algorithms

tested.   Assuming  there  are  no  recomputations  required  at  ¼  memory gives  an  attacker

another 4X memory reduction, in addition to the 2X memory reduction for not having to

compute  the  second  loop.   Combining these  factors,  I  estimate  an  attacker  gains  a  16X

reduction in time*memory cost given cache timing information.

A significant problem with cache-timing resistant algorithms is that more CPUs can be

used to recompute missing values from memory faster.  The defense is to force an attacker to

pay a very high recomputation penalty.  An attacker with 1% node coverage of a sliding-

reverse DAG will find while pebbling the second half, that every 2% he covers requires that

he re-pebble 25% of the graph.  This is because the bit-reverse pattern causes N/50 evenly

spaced nodes to be accessed, and only half of them could have been pebbled by N/100 nodes,

requiring the whole interval before it to be completely repebbled.  This will cause an attacker

to repebble 25% of the graph 25 times, or 2,500 times.  In reality, because the intervals that

get repebbled also depend on other unpebbled nodes and so on, a significant portion of the

entire  graph  will  need  to  be  recomputed  for  every  move  in  the  last  half,  leading  to  a

considerably worse penalty.  Finding a better lower bound remains an open problem.

3.9 Weaknesses

I recommend that users of TwoCats use fixed-length password buffers initialized to 0's, and to

reject passwords with non-printable characters, when that makes sense for their application,

or which do not fit in the buffer.  This insures no branching or memory addressing specific to

the password length ever happens.  Otherwise, as with HKDF and PBKDF2, there might be a
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chance  an  attacker  could  gain  password length  knowledge do to  calling  memcpy on the

passoword.

It  is  possible  for  an  attacker  to  make  better  use  of  TwoCats  leaked  memory than  if

cryptographically secure data were written to memory.  In particular, an attacker might more

easily determine which data block is the first block, minimizing his time to abort an incorrect

password guess.  He might also be able to search swap or data on an SSD specifically for

TwoCats  hash  data,  which  would  be  more  difficult  if  the  data  written  to  memory were

cryptographically indistinguishable from random.  The decision to accept this weakness in

TwoCats  is  deliberate:  the  alternative  is  to  slow  down  memory  hashing  considerably.

Slowing down the algorithm by even 2X would give an attacker with a leaked password

database a potential 4X faster cracking time, since he only needs ½ the memory per core, and

½ the time per core.  Because time*memory security with a memory-hard PHS increases as

the square of the hashing speed, this  was an easy decision to make.   However,  TwoCats

overwrites memory early on, providing some defense even if memory is leaked.  If the first

1/64th of memory is overwritten before an attacker gains access, he will gain only about an

11-13 bit advantage in cracking the password.

On  older  CPUs,  and  some  modern  embedded  CPUs,  multiplication  does  not  run  in

constant time, leading to the possibility of a side-channel timing attack.  On such CPUs, it is

possible to set mulitiplies to 0, both to avoid this timing leak, and because it is unlikely the

CPU can execute the multiplication in parallel with memory hashing, thus lowering security

for  a  given  runtime.   If  multiplications  are  used,  the  runtime  will  reflect  average

multiplication times, which do not strongly depend on the password.  If an attacker can count

the exact number of clock cycles required to hash a password, he may still gain an advantage.

In that case, however, any algorithm that calls memcpy on the password, such as HKDF and

PBKDF2, already has a severe weakness.

My lack of understanding of GPU attacks may have contributed to weaknesses against

current GPU architectures relative to algorithms such as Bcrypt.  More benchmarking will be

required  to  determine  TwoCats's  strength  against  GPUs.   However,  small  (64-byte)

unpredictable reads are done in the inner hashing loop in the second half of the algorithm,

which I believe makes it harder for GPUs to be effective.

With  cache  timing  information,  an  attacker  gains  an  estimated  16X  lower  peak

time*memory cost (though only 5X worse than a resistant PHS).  However, this relies on the

assumption that the sliding-reverse window DAGs cannot be efficiently pebbled with less

than about ¼ memory versus the first-loop DAG size.  The TwoCats first loop uses the DAG

architecture that tested most resistant in this respect, but only upper bounds on recomputation

penalties have been established.  There is some risk that better pebbling algorithms can be

found that make a 1/8th memory attack practical, but this would only result in one bit lost in

resistance.
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Against  simple  brute-force  attacks,  TwoCats  is  resistant  to  TMTOs.   The best  TMTO

found so far reduces the time*memory cost by 10% by keeping every other value in memory

near the end of both loop ranges, since this memory is not likely to be read.  There is some

risk that better TMTOs can be found with more clever memory coverage of computed values.

However, the 4X TMTO improvement we see attackers use against Scrypt cannot be used

against TwoCats, so the security risk here is low.

While I have considerable experience with ASIC and FPGA architectures, I have little

cryptography experience.  Extensive expert review of TwoCats will be required before it can

be considered secure.

4 Efficiency Analysis

TwoCats introduces an efficient compute-time hardened hash function, in addition to being

sequential-memory-hard.  This hash function on most machines will take from 4 to 8 clock

cycles per 32-bit result written to memory, with one thread, because the multiply operation

takes 3-4 cycles, the addition takes 1, and the rest (memory read/write, OR, and increments)

can often be done in parallel.  With multiple threads, throughput can be increased to fill about

half  of  the  memory bandwidth  before  the  memory bottleneck  begins  to  heavily  impact

runtime.

4.1 The Cost of Cache Timing Attack Resistance

The “resistant” PHSs proposed so far seem to allow an attacker to use about ¼ of the memory

compared to the computed DAG size, with little or no recomputation penalty.  There are good

reasons for this.  First, there is a recomputation-free ½ memory attack against all “resistant”

PHSs which have computation DAGs with max fanout degree 2.  When pebbling a resistant

PHS's DAG, simply pick up one of the pebbles used to compute the next node, or if those

pebbles will be needed in future computations, pick a pebble which is not pointed to by any

node beyond the node being pebbled.  This always works for DAGs with max fan-out degree

<= 2.

For DAG pebbling with 1/3 the pebbles compared to the DAG size, we can always pebble

to the 2/3rds mark with no recomputation.  For every new node pebbled after that, we gain a

pebble  that  is  not  needed  to  cover  some  node  that  is  still  pointed  to  by the  remaining

unpebbled nodes.  This makes it very hard to design a hard-to-pebble DAG where an attacker

has  1/3  pebbles.   This  results  in  resistant  PHSs having a  3-4X lower  memory cost  than

unpredictable or hybrid PHSs.

When CPU limited, run-times should be approximately the same for resistant, hybrid, and

unpredictable PHSs when using the same hashing algorithm, though some PHSs do not write

to memory corresponding to DAG nodes that have in-degree 1, saving on memory bandwidth.

This can lead to a lower performance penalty than my estimated 3-4X, and this is in fact the
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case for Catena-2, which has between a 2-3X reduction in the time*memory cost compared to

unpredictable  PHSs.   However,  resistant  PHSs  do  not  suffer  from a  memory bandwidth

degradation in comparison to hybrid and unpredictable PHSs.  Attackers will have to pay a bit

more for the extra RAM, but this is likely to be a small factor, typically less than 2X.

I have written a pebbling application that attempts to pebble TwoCats, Catena-3, and what

I believe is similar to Escrypt's sliding power-of-two window.  In the pebbling algorithm, I

assume an attacker knows every detail about the computation DAG ahead of time, and can

plan his memory usage strategy carefully.  Automated pebbling confirms that all DAG types

tested are easily pebbled with ¼ pebbles compared to number of nodes.

In summary, the cost for resistant PHSs versus unpredictable PHSs is typically about a 3-

4X penalty in time*memory cost, though in some cases it may be in the 2-3X range.

4.2 Computation DAGs

The original  Script  algorithm writes  a  linear  chain of  hashed blocks  to  memory,  each

hashed block depending sequentially on the data computed for the previous.   Its directed

acyclic computation graph is a linear chain:

Scrypt Computation DAG:

0 1 2 3 4 5 6 7 8 9 10

Script is vulnerable to TMTO attacks.  An attacker covering nodes 3 and 7 sees an average

recomputation of 1.5 nodes + second loop hashing, for a 2.5  computations per node in the

second loop.  Adding first loop computations gets the total to 3.5 computations per node,

compared with 2 computations per node when keeping all nodes in memory.  That's a 1.75X

computation penalty, but the attacker only covered 1 in 4 nodes, so his time*memory is down

to 0.44X of his original cost.  As an attacker reduces his memory coverage, his time*memory

cost converges to ¼ of the original.
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TwoCats's “resistant” Computation DAG:

0 1 2 3 4 5 6 7 8 9 10

One visual give-away that this is a sliding-power-of-two bit-reversal DAG is that every

power of 2  node points to node 0.  To compute the destination of an edge, take the binary

representation of the source node, remove the leading 1, and reverse the bits.  For example,

node 6 is 110, which becomes 10 after removing the leading 1, and then 01 with bit-reversal,

so node 6 points to node 1.  If an edge length is 2 greater than largest power of 2 less than the

source node number, then add that power of two.  So, for example, if the graph were larger,

we'd see node 11000 (node 24) would point to node 0001 (node 1), but since 1 + 16 + 2 = 19

< 24, we add 16.  Therefore, node 24 points to node 17.  This causes the destination node to

always fall within the “sliding” power-of-two window preceding a node (actually it follows 2

pebbles behind to avoid 1-long edges).

This DAG architecture was chosen after it  demonstrated the strongest resistance of all

DAG architectures tested to my automated pebbling algorithm.  An attacker attempting to

pebble  such  graphs  with  a  combination  of  fixed-spaced  pebbles,  fixing  pebbles  on  high

degree nodes, and fixing pebbles on destinations of short edges will find this graph requires

more pebbles and recomputation than the other DAGs tested.

TwoCats's “unpredictable” Computation DAG:

0 1 2 3 4 5 6 7 8 9 10

TwoCats “unpredictable” computation DAGs have the same linear chain, but instead of

waiting until all memory is written before doing password dependent pseudo-unpredictable

reads, it reads and hashes while writing.  This creates a unpredictable-ish looking graph where
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edges on average point back ¼ from their position, and there are lots of short edges.  This

keeps the midpoint cut size around 17% of the number of nodes.  In this case, the cut size to

the right of node 5 is 4.

If an attacker has covered only nodes  3 and 7 only,  then to  compute node 8 requires

recomputation of every single missing node because 8 points to 6, which points to 5 which

points to 4, which points to 2 and then onto 0.  Similarly, computing 9 and 10 also require full

recomputation of every missing node, since they point to 8.  In general, a TwoCats graph

recomputation penalty grows to a substantial portion of the entire graph for each missing node

requiring recomputation by the time an attacker  has  only 1/8th of  the nodes  in  memory,

resulting in a runtime proportional to the square of the graph size.  While a ½ memory TMTO

with every other memory block kept results in no significant change in memory*time cost,

anything lower than ½ rapidly becomes too expensive to compute.  An attacker keeping every

4th node in memory suffers an additional computation factor of over 2000X for a 1M node

graph.  A reasonable attack against TwoCats would be to save ½ of the last ½ of memory.  For

1,000,000 node graphs the gain is < 2% in the time*memory cost.  If we increase spacing to 3

in the last ¼, then to 4 in the last 8th, and so on, the memory*time cost drops 3% versus the

normal algorithm.

Catena-3 Computation DAG:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

The Catena-3 DAG is computed using ¼ of the memory requirement compared to the size

of  it's  computation  DAG.  However,  an attacker  is  unlikely to  succeed at  improving his

time*memory cost while using even one less memory location than ¼.  Our algorithm pebbles

Catena with 0 recomputation penalty for a ¼ pebble coverage just like TwoCats and Escrypt.

With one fewer pebbles, the Catena pebbling penalty jumps to 1.8X for a 1024 node graphs,

using fixed pebbles every 4.  The penalty seems independent of graph size.  When a Catena-3

sub-DAG is embedded in the first row, the penalty jumps to 3X, when using fixed pebbles
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every 4 and pebbling nodes pointed to by short edges, which improves the situation on the

first row.

Code for the pebbling application can be found at:

https://github.com/waywardgeek/TwoCats/tree/master/predict

5 Benchmark Results

The  following  benchmarks  were  run  on  my quad-core  3.4GHz  i7-3660 Ivy  Bridge

development machine  with 2 banks of 4GB CORSAIR Vengeance RAM,  running  Manjaro

(Arch) Linux.  Script version 1.1.6 was locally compiled with SSE2, and -O3 -march-native

optimization.  Catena  was compiled from the  available on  1/24/14  from github,  using the

waywardgeek branch I created.  Escrypt was version 0.3.1, patched to upgrade it to 0.3.2, run

in Scrypt-compatibility mode, and hand modified to only run a single print_scrypt call and

then exit.  Multiple threads did not seem to work properly in Scrypt, so it was run only single-

threaded.   However,  the  Escript  implementation  of  Scrypt  is  currently  the  fastest

implementation of  Scrypt  available.   All  of  these benchmarks  include  memory allocation

overhead.  Executable were run with another CPU intensive task running and without, three

times,  and the best time was listed.

Peak cost is memory/CPU time.  Average cost is computed based on my understanding of

how each algorithm fills memory, and is an attempt to show the average memory usage / CPU

time.  In particular, Scrypt fills memory linearly in the first pass, and hashes it in the second

leading to an average memory of about 0.75 of the peak, while Catena-3 fills memory linear

in the first write pass, and holds steady in the next 5 read/write passes, leading to an average

memory of 11/12 = 0.92.  TwoCats does the worst of the three on average memory, as it fills

continuously, at 0.5.

Bandwidth is total read/write passes * memory/CPU time.  Catena can be done in 6 passes,

which is what I assume in the table, though the implementation currently has 8, so Catena's

bandwidth and runtime still have room for optimization.

I apologize to Alexander, the Escrypt author, and Christian, the Catena author,  for using

benchmarks from their pre-released code.  Please feel free to ask me to correct/update/remove

any data I have listed, or to request that new data be added.  I feel it is important to list Catena

data, since it shows the 3-4X peak time*cost reduction that I expect for a “resistant” PHS, and

I have only listed data when using the same hash function as I had used in NoelKDF, which

shows Catena in a good light from a benchmark perspective.  Alexander mentioned that I

should  list  the  best  Script  data  available,  and  his  Escrypt  implementation  run  in  Scrypt

compatibility mode is the best available.  Also, as Alexander suggested, I have benchmarked

an Escrypt  Salsa20/2  version,  which  I  built  by  deleting  3  of  the  4  2-round  calls  in
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SALSA20_8_BASE.  The idea is to show how much faster Scrypt could be with a simple 3-

line change.

Memory CPU
Time (s)

Compute
Hardness

Bandwidth
(GiB/s)

Peak Cost Average
Cost

Scrypt (1 thread) 500 MiB 0.83 1.2 1.0X 0.75X

Escrypt (1 thread) 2 GiB 2.71 1.5 1.2X 0.90X

Escrypt (2 threads) 2 GiB 1.40 2.9

Escrypt (4 threads) 2 GiB 0.81 4.9

Escrypt (8 threads) 2 GiB 0.61 6.6

Escrypt/Salsa20/2
(1 thread)

2 GiB .98 4.1

Escrypt/Salsa20/2
(8 threads)

2 GiB .50 8.0

Catena-3 1 GiB 1.37 4.4 1.2X 1.1X

Catena-2 1 GiB 1.06 5.7 1.6X 1.4X

TwoCats (1 thread) 2 GiB 0.52 52% 7.7 6.4X 3.2X

TwoCats (2 threads) 2 GiB 0.33 37% 12.1

Memmove (1 thread) 2 GiB 0.23 17

Memmove (2 threads) 2 GiB 0.18 22

Compute hardness is calculated as the time spent doing serial multiplications compared to

the  total  runtime.   On  the  3.4GHz  quad-core  i7  Ivy  Bridge  processor  used  in  these

benchmarks, multiplication takes 3 cycles, or 0.88ns.  An additional cycle is required for the

XOR  operation,  making  75%  the  maximum  possible  compute  time  hardness.   Memory

allocation overhead is on the order of 15-20%, making it difficult to achieve compute time

hardness over 50% while hashing external RAM.  A dedicated authentication server which

allocates  memory  once  for  many  authentications  would  achieve  higher  compute-time

hardness.

For small memory in-cache hashing, TwoCats runs very fast, especially with SSE or AVX2

enabled.  The Haswell machine was provided by Solar Designer, and is an Intel quad-core i7-

4770.  These numbers are for 1, 4, and 8 threads, with either 0 or 1 multiplication in the inner

loop per 32 bytes hashed.  Each hash requires 2 reads, doubling the bandwidth.  All runs were

made with the blocksize equal to 16KiB and subblocks size equal to 64, meaning there were

many small random reads.  In general, this slows down L1 cache limited loops by about 2X

compared to having no small random reads.  Each run was made hashing 1MiB repeated 2^16

times.

1T 0M 4T 0M 8T 0M 1T 1M 4T 1M 8T 1M
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Haswell AVX2 79 GiB/s 260 GiB/s 350 GiB/s 57 GiB/s 199 GiB/s 277 GiB/s

Ivy Bridge SSE2 57 GiB/s 191 GiB/s 191 GiB/s 45 GiB/s  142 GiB/s 155 GiB/s

AVX2 showed the most improvement over SSE2 when running in L1 cache, and with  8

threads.  Even a single multiplication in the inner loop results in a multiplication time limited

loop when running in L1 cache.

The L1 data bus in Ivy Bridge and Sandy Bridge is 16 bytes wide, with two lanes.  On

Haswell the data widths are doubled, and we can read 32 bytes at once.  The theoretical top

read bandwidth in Ivy bridge was 109 GiB/s, so it seems TwoCats is achieving about 50%

with  1  thread.   Similarly,  it  achieves  about  36% of  the  possible  L1 read  bandwidth  on

Haswell.  When sequential rather than random 64-byte reads are done, almost the full possible

bandwidth is achieved on Ivy Bridge, at 92 GiB/s.

I compared resistance to  cache  timing attacks  using  my automated  pebbler.   Catena-3

seems to be the clear winner for a “resistant” PHS, as even reducing 1 pebble punishes an

attacker significantly.  However “hybrid” PHSs fill memory with all the computed results, so

users do not benefit from the reduced memory consumption the way they do with Catena.  For

TwoCats, I tested Catena-2 and Catena-3, with and without an embedded Catena-3 graph in

the first row (“Enhanced Catena”), and various other DAG styles, including the combination

of Alexander's power-of-two sliding window and Christian's bit-reversal.  As I enhanced the

algorithm, the recomputation penalties decreased, but the relative order of results  has not

changed.   To  improve  pebbling,  I  manually  tuned  my  3  parameters  to  minimize  the

recomputation penalty.  Fixed pebbles at fixed spacing had the greatest impact.  Enhanced

Catena needs a heuristic to cover nodes pointed to by short edges, and the sliding-reverse

DAGs needed a heuristic for fixing pebbles on nodes of high in degree.

Spacing Max Degree Min Edge Length Recomputation
Penalty

Catena-3 8 0 0 9X

Catena-2 5 0 0 2.6X

Enhanced Catena-3 8 0 25 89X

Enhanced Catena-2 5 0 25 6.5X

Sliding-Reverse 16 3 0 973X

All  of  these  runs  pebbled  graphs  with  128 pebbles.   The  Catan-3  and sliding-reverse

graphs had 1024 nodes, while the Catena-2 graphs had 768 nodes.
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6 Intellectual Property Statement

I,  Bill  Cox,  place  TwoCats,  bothe  the  algorithm  and  all  files  and  intellectual  property

associated with this project, into the public domain.  I will file no patents on any idea used in

this  project.   TwoCats  includes  source  code  from the  official  references  for  Blake2  and

HKDF, and are is released under the MIT-like licenses.  Also, twocats-test.c was copied from

Catena's catena_test_vectors.c and is released under the MIT license.

TwoCats is and will remain available worldwide on a royalty free basis, and I am unaware

of any patent or patent application that covers the use or implementation of the TwoCats

algorithm. 

7 No Hidden Weaknesses

I, Bill Cox, assert that TwoCats has no deliberately hidden weakness such as back doors, and I

know of  no  weaknesses  other  than  those  discussed  in  this  document  in  the  Weaknesses

section.  No unusual constants are used in the code.
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