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Chapter 1

Specifications of POMELO

1.1 Operations, Variables and Functions

The operations, variables and functions used in POMELO are defined below.

1.1.1 Operations

The following operations are used in POMELO:

+ : addition modulo 264

⊕ : bit-wise exclusive OR
& : bit-wise AND
∥ : concatenation
<< : left-shift
>> : right-shift
<<< : left-rotation.

x <<< n means that (x << n) ⊕ (x >> (64 − n)), where x is a
64-bit integer, n is a non-negative integer not larger than 64.

Let X and Y be two 256-bit words. X = x3 ∥ x2 ∥ x1 ∥ x0, where each xi is
64-bit. Y = y3 ∥ y2 ∥ y1 ∥ y0, where each yi is 64-bit.

+′ : X +′ Y = (x3 + y3) ∥ (x2 + y2) ∥ (x1 + y1) ∥ (x0 + y0).
SHL256 : SHL256(X,n) = (x3 << n) ∥ (x2 << n) ∥

(x1 << n) ∥ (x0 << n).
ROTL256 : ROTL256(X,n) = (x3 <<< n) ∥ (x2 <<< n) ∥

(x1 <<< n) ∥ (x0 <<< n).
ROTL256 64 : ROTL256 64(X) = x2 ∥ x1 ∥ x0 ∥ x3.

Note that in C programming, if AVX2 instructions are available, the opera-
tions on 256-bit words can be implemented using the compiler intrinsics:
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1. X +′ Y is implemented as mm256 add epi64(X, Y);

2. X ⊕ Y is implemented as mm256 xor si256(X, Y);

3. SHL256(X,n) is implemented as mm256 slli epi64(X, n);

4. ROTL256(X,n) is implemented as mm256 xor si256( mm256 slli epi64(x,n),
mm256 srli epi64(x,(64-n)) )

5. ROTL256 64(x) is implemented as mm256 permute4x64 epi64((x),
MM SHUFFLE(2,1,0,3))

1.1.2 Variables

m cost : the parameter used to adjust the memory size. 0 ≤ m cost ≤ 25
pwd : the password
pwd size : the password size in bytes. 0 ≤ t ≤ 256.
random number : a 64-bit pseudo random number.
S : the state. The state size is 213+m cost bytes.
S8[i] : the ith byte of the state.
S64[i] : the ith 64-bit word of the state.

S64[i] = S8[8i+ 7] ∥ S8[8i+ 6] ∥ S8[8i+ 5] ∥ S8[8i+ 4] ∥
S8[8i+ 3] ∥ S8[8i+ 2] ∥ S8[8i+ 1] ∥ S8[8i]

S[i] : the ith 256-bit word of the state.
S[i] = S64[4i+ 3] ∥ S64[4i+ 2] ∥ S64[4i+ 1] ∥ S64[4i]

state size : the state size in bytes. state size = 213+m cost.
salt : the salt.
salt size : the byte size of salt. 0 ≤ salt size ≤ 64.
t cost : the parameter used to adjust the timing. 0 ≤ t cost ≤ 25.
t : the output size in bytes. 1 ≤ t ≤ 256.

1.1.3 Functions

Four state update functions are used in POMELO. Their specifications are given
below. Note that S[i] is the ith 256-bit element of the state, and there are
state size/32 elements in the state.

State update function F(S, i) :

i0 = (i− 0) mod (state size/32);
i1 = (i− 2) mod (state size/32);
i2 = (i− 3) mod (state size/32);
i3 = (i− 7) mod (state size/32);
i4 = (i− 13) mod (state size/32);
S[i0] = S[i0] +′ (((S[i1]⊕ S[i2]) +′ S[i3])⊕ S[i4]);
S[i0] = ROTL256 64(S[i0]);
S[i0] = ROTL256(S[i0], 17);
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State update function G(S, i, random number).

In this function, element S[i] is updated; two table lookups are used to update
two elements S[index global] and S[index local]. At each step, the value of
index local is updated according to random number. In the i-th step, the
value of index global is updated according to random number if i is a multiple
of 32; otherwise, the value of index global is incremented by 1.

The range of index local is [i−4096, i+4096), and is within the range of the
state; the range of index global is the whole state. Note that if the state size
is not more than 218 bytes (m cost is not larger than 5, i.e., there are at most
8192 256-bit elements in the state), the range of index local and index global
are the same.

G(S, i, random number)
{

F(S, i);

//update index local and index global
index local = (i−4096+(random number mod 8192)) mod (state size/32);
if (i mod 32 == 0)

index global = (random number >> 16) mod (state size/32);
endif;
index global = (index global + 1) mod (state size/32);

//table lookup S[index local], here i0 is (i mod statesize/32)
S[i0] = S[i0] +′ SHL256(S[index local], 1);
S[index local] = S[index local] +′ SHL256(S[i0], 2);

//table lookup S[index global]
S[i0] = S[i0] +′ SHL256(S[index global], 1);
S[index global] = S[index global] +′ SHL256(S[i0], 3);

//update random number
random number+ = (random number << 2);
random number = (random number <<< 19)⊕3141592653589793238ULL;

}

Note that in function G(S, i, random number), index local and index global
are updated independent of the input password, so the table lookups in this
function are not affected by the cache-timing side-channel attack.
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State update function H(S, i, random number):

Function H is very similar to function G. The only difference is that at the end
of function H, random number is updated according to the secret state. So the
table lookups in function H are affected by the cache-timing side-channel attack.

H(S, i, random number)
{

F(S, i);

//update index local and index global
index local = (i−4096+(random number mod 8192)) mod (state size/32);
if (i mod 32 == 0)

index global = (random number >> 16) mod (state size/32);
endif;
index global = (index global + 1) mod (state size/32);

//table lookup S[index local], here i0 is (i mod statesize/32)
S[i0] = S[i0] +′ SHL256(S[index local], 1);
S[index local] = S[index local] +′ SHL256(S[i0], 2);

//table lookup S[index global]
S[i0] = S[i0] +′ SHL256(S[index global], 1);
S[index global] = S[index global] +′ SHL256(S[i0], 3);

//update random number as a 64-bit word of the state.
//here i3 = (i-7) mod state size/32
//S64[i] indicates the ith 64-bit element of the state.
random number = S64[4 ∗ i3];

}
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1.2 Hashing the password and salt

The hashing algorithm is given below. Note that S[i] is the ith 256-bit element,
S8[i] is the ith byte of the state. There are 28+m cost+t cost 256-bit elements in
the state.

1. Initialize the state S to 0, the state size is 213+m cost bytes.

2. //load the password, salt, and the input/output sizes into the state.
Let S8[i] = pwdi for i = 0 to pwd size− 1;
Let S8[pwd size+ i] = salt[i] for i = 0 to salt size− 1;
Let S8[384] = pwd size mod 256;
Let S8[385] = pwd size/256;
Let S8[386] = salt size;
Let S8[387] = output size mod 256;
Let S8[388] = output size/256;

//introducing random constants to the state using Fibonacci sequence.
Let S8[392] = 1;
Let S8[393] = 1;
Let S8[i] = (S8[i− 1] + S8[i− 2]) mod 256 for i = 394 to 415;

3. // expand the data into the whole state.
for i = 13 to 28+m cost − 1, do: F(S, i);

4. // update the state using function G
// (involving password-INdependent random memory accesses)
random number = 123456789ULL;
for i = 0 to 27+m cost+t cost − 1, do: G(S, i, random number);

5. // update the state using function H
// (involving password-dependent random memory accesses)
for i= 27+m cost+t cost to 28+m cost+t cost−1, do: H(S, i, random number);

6. // update the state using F

for i = 0 to 28+m cost − 1, do: F(S, i);

7. The hash output is given as the last t bytes of the state S (t <= 256):

S8[state size− t] ∥ S8[state size− t+ 1] ∥ · · · ∥ S8[state size− 1] .
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1.3 Recommended Parameters

We recommend 5 ≤ m cost + t cost ≤ 25. The memory size of POMELO
is 213+m cost bytes, i.e., 28+m cost 256-bit words. There are 27+m cost+t cost

function G and 27+m cost+t cost function H.
The recommended memory size ranges from 8KB (m cost = 0) to 256GB

(m cost = 25). When m cost + t cost = 5, it is very fast to compute the
password hashing. When m cost + t cost = 25, we get very high security, but
it is also very expensive to compute the password hashing.

Choosing the proper values ofm cost and t cost depends on the requirements
of applications. A user can find more information in Section 3.1 on how to choose
the proper parameters (or to test the POLEMO code by adjusting the value of
m cost and t cost).

If a user wants to compute the hash in a fast way with large memory, the
user may use m cost = 15, t cost = 0 (228 bytes of memory).

1.4 Efficient implementation

The ‘if’ selection statement in function G and H can be removed when we
implement 32 G functions (or H functions) in a ‘for’ loop.

The modular operation in POMELO can be implemented using the bit-wise
AND operation since the divisors are the power of 2.

1.5 POMELO as key derivation function

POMELO can be used as a key derivation function (KDF) to derive a key from
a password. There are several ways to generate a key with arbitrary length from
POMELO. The algorithm described in this section uses the POMELO algorithm
in key derivation with slight modification to POMELO. When POMELO is used
for KDF, the value of S8[389] is set to 1 in the Step 2 of POMELO. We call
this modified POMELO as POMELO’. The reason that we set S8[389] to 1 is to
prevent the related-cipher attack [12] so that even if a password is used in both
password hashing algorithm and key derivation algorithm (and the salts are the
same), the password security would not be significantly affected; otherwise, the
password image of password hashing may be used to compromise the security
of the derived key. The API of POMELO can be slightly modified to include
this variant for KDF.

Suppose that the key K consists of n bytes, K = k0 ∥ k1 ∥ · · · ∥ kn−2 ∥
kn−1. There is no restriction on the value of n. But we expect that in all
the applications, n is much less than 264. POMELO-KDF is given below. If a
password is used in POMELO-KDF to generate multiple keys (instead of a long
key), the user should generate a different salt for each invocation of POMELO-
KDF.
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//POMELO-KDF: Derive an n-byte key K from password;
//POMELO’ is iterated to generate a long key;
//Each invocation of POMELO’ always generates 256 bytes output,
//half of the outputs are key bytes.

1. Modify the POMELO algorithm so that S8[389] is set to 1 in Step 2 of
POMELO. The modified POMELO is called POMELO’.

2. for i = 0 to ⌈ n
128⌉ − 1

{
output size = 256;

POMELO’(output,output size,pwd,pwd size,salt,salt size,m cost,t cost);

pwd = output; //use the original password only once.

pwd size = 256;

k128i ∥ k128i+1 ∥ · · · ∥ k128i+127 are the second half of output;

}

3. The key K is the first n key bytes: k0 ∥ k1 ∥ · · · ∥ kn−2 ∥ kn−1.

The parameters of m cost and t cost in POMELO-KDF are identical to that in
POMELO. In POMELO-KDF, the key length n is not an input, so the key can
be derived without knowing the total key size. The password is used only once
in POMELO-KDF so that the program does not need to keep the password in
memory during the key derivation process.
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Chapter 2

Security Analysis

We have the following security claims based on our initial security analysis:

Claim 1. It is impossible to recover the password from the hash output faster
than trying those possible passwords, i.e., POMELO is one-way.

Claim 2. POMELO is strong against the attacks that intend to bypass the
large memory in POMELO.

Claim 3. POMELO is strong against the attacks using GPU and dedicated
hardware. It is due to the use of large memory in POMELO, and it
is difficult to attack using smaller memory space.

Claim 4. POMELO is strong against the cache-timing attack [4] since the first
half of POMELO uses password independent memory accesses.

2.1 Randomness, Preimage/Collision Resistance

For any password hashing algorithm, the randomness preimage/collision resis-
tance can be achieved easily. The reason is that in general we can perform a
lot of computations and use a large state in the algorithm, and the password
is secret to the attackers. Thus designing password hashing algorithm is much
easier than designing cryptographic hash function when we are talking about
randomness, preimage/collision security.

Note that we used a Fibonacci sequence to initialize 24 bytes of the state.
The Fibonacci sequence is used to prevent the symmetry structure of POMELO
being exploited in an attack.

2.1.1 Differential cryptanalysis

Differential cryptanalysis [7] is powerful against symmetric ciphers. To design
a password hashing algorithm, we should first ensure that the input difference
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cannot be eliminated easily in the state; otherwise, the collision in the state
may be exploited to bypass most of the operations in a cipher, such as the
differential attacks against stream ciphers Py [13] and ZUC [14]. In POMELO,
the password and salt are expanded into a state with size at least 8192 bytes
through an invertible non-linear feedback register (Step 3 in Sect. 1.2). Step
4 is also invertible. So there is no collision in the state in Step 3 and 4 of
POMELO.

Step 3, 4, 5, and 6 of POMELO contribute to the differential propagation in
POMELO. The addition operations in Step 3 and 6 affect the differential prop-
agation; the table lookups and additions in Step 4 and 5 affect the differential
propagation.

We first look at Step 3. Suppose that there is an input difference. We an-
alyze the simple feedback function of POMELO to identify the most efficient
differential path. Our simulation shows that the most efficient differential path
occurs when 13 consecutive elements are all zero except that one of most sig-
nificant bits is one. There are 92 difference bits passing through addition in the
nonlinear feedback function in every 100 feedback steps; there are 212 differ-
ence bits passing through additions in every 150 feedback steps; and there are
412 difference bits passing through additions in every 200 feedback steps; and
there are 587 difference bits passing through the additions in every 250 feed-
back steps. (When we are counting the difference bits in addition, we ignore the
difference bits at the most significant bit positions; and we simply ignore the
difference bits if they occur at the same positions of two addends although they
also contribute to the differential cryptanalysis). Each difference bit introduces
differential probability 2−1, so we claim that each feedback step introduces dif-
ferential probability 2−1 on average. For m cost = 0, we have the smallest
number of feedback steps (which is 243), so the differential probability of Step
3 is at most 2−243.

We proceed to consider Step 4. The password hashing algorithm cannot be
too fast, so we have the restriction that m cost + t cost >= 5 for POMELO.
Step 4 thus involves at least 4096 feedback steps. Each feedback step in Step 4
is much stronger than that in Step 3 since two table lookups are used in each
feedback step of Step 4. The difference bit(s) from “random” location in the
state would be introduced into each feedback step of Step 4, and much more
difference bits would be introduced. Thus we can claim that the differential
probability of Step 4 is at most 2−4096.

Now consider Step 5. Each feedback step in Step 5 is stronger than that in
Step 4 since password dependent table lookups are used in each feedback step
of Step 5. Thus we can claim that the differential probability of Step 5 is at
most 2−4096.

Each feedback step in Step 6 is stronger than that in Step 3 since two ad-
ditions are involved in a feedback step of Step 6; while effectively there is only
one addition in a feedback step of Step 3.

Combining the above analysis, the differential probability of POMELO is
less than 2−8000. It shows that POMELO is very strong against the differential
attack.
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2.1.2 Linear cryptanalysis

To simplify the linear cryptanalysis [9], we consider only the linear approxima-
tion in Step 5 in which we lookup a secret and changing Sbox (part of the state).
To simplify the analysis further, we consider only the local table lookups. For
m cost = 8, the Sbox is the smallest 8bit-to-256bit Sbox.

In the expansion stage, 5 of those 14 elements are linearly related through
the feedback function. In the following, we consider the linear relation in 14
consecutive elements since the output size is at most 256 bytes (8 elements).
In every feedback step in Step 5, each element is added with an output of the
Sbox. After 14 feedback steps, the new additional bias of the linear relation
of those 5 elements becomes 2−8×4 = 2−32 (since those 5 table lookups may
provide special outputs satisfying the linear relation; however, once an output
is chosen, the positions of other four outputs are fixed, so the probability is
2−32). In the next 14 feedback steps, the new additional bias of the linear
relations again becomes 2−32. Since Step 5 consists of at least 4096 feedback
steps, the new additional bias of the linear relation of Steps 5 becomes less than
24096/14−1 × (2−32)4096/14 = 2−9071 according to the pilling-up lemma. The
linear bias is sufficiently small, and POMELO is very strong against the linear
cryptanalysis.

2.1.3 Slide attack

Slide attack [8] is powerful for bypassing a lot of operations if the cipher consists
of many identical steps/rounds. A typical approach to defend against slide
attack is to introduce different constants at each step/round. Slide attack is not
a threat to POMELO since we use table lookups to access the state: any slide
of the elements in the state would result in completely different table lookup
outputs.

2.1.4 Randomness

Since POMELO is strong against the differential, linear cryptanalysis and slide
attack, the output of POMELO is random.

2.1.5 Preimage/Collision Resistance

Since POMELO is strong against the differential, linear cryptanalysis, the out-
put of POMELO is random.

2.2 Low Memory Attack

An important design goal of password hashing algorithm is to prevent the large
memory state being bypassed easily in password cracking. Writing to random
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memory locations is an effective way to resist the low-memory attack. A pass-
word hashing scheme that is designed to resist the low-memory is the scrypt
[10].

Our analysis shows that if an attacker uses only half of the memory in the
attack against POMELO (for the smallest value of t cost = 0), the number of
operations would be increased by at least 128 times; if only one quarter of the
memory is used in the attack, the number of operations would be increased by
at least 16384 times. The details of the attack are given in this section.

To make the analysis simple, we assume that accessing any data from Step
3 (data expansion) requires negligible amount of storage and computation. The
following three steps (for t cost = 0) should be computed in the attack.

4. random number = 123456789ULL;
for i = 0 to 27+m cost − 1, do: G(S, i, random number);

5. for i = 27+m cost to 28+m cost − 1, do: H(S, i, random number);

6. for i = 0 to 28+m cost − 1, do: F(S, i);

2.2.1 Use half of the memory in the attack

Note that in Step 4 and 5, on average each state element is updated once through
index global; and each state element is updated once through index local. Sup-
pose that the memory being used in the attack is only half of the state, we
consider that at the 16384n-th step of Step 4 and 5, the attacker stores the
elements S[j] for 16384n − 4096 < j < 16384n + 4096 (the data size can be
slightly less than 256KB). From these partial states, the attacker may have the
chance to construct the rest of the state.

In Step 6, we need the whole state that has been updated in Step 4 and
5. Note that many 1KB data segments (of 32 steps) are updated in function
G or H through the global table lookup (note that the whole state is updated
once in this way on average). In Step 6, such an updated 1KB data segment
should be computed from a remote 256KB partial state Sx

256KB using G or H
(we assume that the location of that partial state was stored with negligible
amount of memory). To generate such a 256 KB partial state from some stored
partial state (S[j] with 16384n − 4096 < j < 16384n + 4096), on average 8192
steps are needed (since the distance between two stored partial states is 16384
steps, and that only forward computation from a partial state is cost effective).
Thus the attack requires 8192/32 = 256 times more steps. If we assume that
the attacker can manage to save half of those updated 1KB data segments, the
number of operations in the attack still increase by 128 times.

2.2.2 Use one quarter of the memory in the attack

Suppose that the memory being used in the attack is only one quarter of the
state, we consider that at the 32768n-th step of Step 4 and 5, the attacker stores
the elements S[j] for 32768n− 4096 < j < 32768n+ 4096 (the data size can be

12



slightly less than 256KB). From these partial states, the attacker may have the
chance to construct the rest of the state.

In Step 6, we need the whole state that has been updated in Step 4 and
5. Note that many 1KB data segments (of 32 steps) are updated in function
G or H through the global table lookup (note that the whole state is updated
once in this way on average). In Step 6, such an updated 1KB data segment
should be computed from a remote 256KB partial state Sx

256KB using G or H
(we assume that the location of that partial state was stored with negligible
amount of memory). To generate such a 256 KB partial state from some stored
partial state (S[j] with 32768n− 4096 < j < 32768n+ 4096), on average 16384
steps are needed (since the distance between two stored partial states is 32768
steps, and that only forward computation from a partial state is cost effective).
Thus the attack requires 16384/32 = 512 times more steps.

The actual complexity of the above attack is much higher since when we
are computing those 16384 steps to reach a partial state Sx

256KB (from the
stored partial state), 16384 global table lookups are again needed, and these
table lookups can be very expensive. Suppose that 1KB data segment (for
32 steps) in the global table lookup is not the original data from Step 3,
but it gets modified in Step 4 and 5 already (the chance is half), then we
need to generate this 1KB data segment from some partial state (S[j] with
32768n − 4096 < j < 32768n + 4096), and it would cost another 16384 steps
on average. If we assume that the attacker can manage to save half of those
updated 1KB data segments (being modified in Step 4 and 5 already), the
number of operations can be reduced by half. Thus the overall attack requires
512*(16384/2/32/2) = 65536 times more computation.

The above analysis shows that POMELO is very strong against the low memory
attack.

2.3 SIMD Attack

The SIMD is efficient since the instruction decoding and control circuits can be
greatly saved. In POMELO, function H makes the attack using SIMD expensive
since the function H uses password-dependent memory accesses.

If an attacker wants to launch the SIMD type attack against POMELO,
the attacker must first launch cache-timing attack to recover the state infor-
mation leaked from function H, then use SIMD type attack against the first
half of POMELO. It makes the attack much harder since likely it requires some
malicious program running on the same machine as the POMELO algorithm.

Furthermore, POMELO allows the use of large memory in password hashing.
The cost-saving of using SIMD becomes much less effective when compared to
the memory cost (for example, 256 MB memory). So we believe that POMELO
provides strong security against SIMD attack.
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Chapter 3

Efficiency Analysis

3.1 Software Performance

We implemented POMELO in C code. We tested the speed on Intel Core
i7-4770K 3.5GHz processor (Turbo Boost 3.9GHz is enabled, 256KB Level 2
cache for each core, 8MB shared Level 3 memory cache, Memory Types DDR3-
1333/1600) running 64-bit Ubuntu 14.04. The DRAM size is 16 Gigabytes. The
compiler being used is gcc 4.8.2, and the optimization option “gcc -mavx2 -O3”
is used. The code being tested uses AVX2 instructions (it is submitted together
with this report).

The performance data are given in Table 3.1. POMELO is efficient even
when the state size is very large. For example, when the state size of POMELO
is one Gigabytes (m cost = 17, t cost = 0), it takes 1.1 seconds to hash a
password. When the state size of POMELO is 256 Megabytes, it takes only
0.28 seconds (m cost = 15, t cost = 0) to hash a password.

We also implemented POMELO without using AVX2 or SSE instructions.
The C code is submitted together with this report. This code is expected to run
efficiently on most of the computing platform. For example, when the state size
of POMELO is one Gigabytes (m cost = 17, t cost = 0), it takes 1.74 seconds
to hash a password on the processor Intel Core i7-4770K.

Note that when the state size is large, the malloc takes significant amount
of time. A server can reduce this cost by using one malloc for hashing multiple
passwords. For example, when the state size is one Gigabytes, if 20 passwords
are hashed with one malloc, it takes 0.92 seconds to hash a password on average
(about 20% improvement in speed).

3.2 Performance on GPU and Hardware

In Pomelo, large state size can be used. The use of random memory accesses
(read and write) makes it ineffective to bypass the memory restriction (i.e., it
is not cost-effective to use memory smaller than the state to launch the pass-
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word cracking attack). It is thus expensive to implement the password cracking
against POMELO on GPU and dedicated hardware.

The functions H accesses (read and write) memory in a random way. It is
thus expensive to utilize the SIMD power of GPU to crack passwords protected
by POMELO.

However, in case that there is cache timing attack against POMELO, the
attacker can retrieve partial information of the state, and use this partial in-
formation to bypass the second half of POMELO. But even in the presence of
successful cache timing attack, the attacker still has to attack the first half of
the algorithm. The first half of the POMELO is not vulnerable to the cache-
timing attack, and it uses large amount of random memory accesses (function
G), so it is difficult to develop efficient attacks on GPU since large memory is
still needed.

3.3 Client-independent update

We believe that for any tunable password hashing algorithm, it is straightfor-
ward to achieve client-independent update. It is as simple as follows: we use
the algorithm with the new parameters to hash the old password image gener-
ated with the old parameters. After the update, for any input password, the
algorithm is applied twice: one with the old parameters; another with the new
parameters.

Another approach to design the client-independent update is to simply in-
crease the parameter (such as changing the value of t cost parameter). POMELO
does not use this approach. The reason is that POMELO should have strong
resistance against the cache-timing attack, so we avoid mixing the password-
independent table lookups and password-dependent table lookups (the first half
of POMELO is strong against the cache timing attack). Increasing the value
of t cost in POMELO also increases the number of password-independent table
lookups that must be involved once the cache-timing attack is successful. If
we use the second approach to design client-independent update, POMELO’s
strength against the cache-timing attack would get affected.
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Table 3.1: The timing of POMELO on Intel Core i7-4770K

m cost t cost state size (bytes) timing (seconds)

2 0 215 0.00001
3 0 216 0.00002
4 0 217 0.00004
5 0 218 0.00008
6 0 219 0.00018
7 0 220 0.00036
8 0 221 0.00079
9 0 222 0.00158
10 0 223 0.00445
11 0 224 0.01242
12 0 225 0.034
13 0 226 0.069
14 0 227 0.140
15 0 228 0.281
16 0 229 0.565
17 0 230 1.136
18 0 231 2.277
19 0 232 4.563
20 0 233 9.137

2 18 215 1.197
3 17 216 1.225
4 16 217 1.242
5 15 218 1.322
6 14 219 1.442
7 13 220 1.490
8 12 221 1.522
9 11 222 1.520
10 10 223 2.657
11 9 224 4.335
12 8 225 4.780
13 7 226 5.012
14 6 227 5.250
15 5 228 5.450
16 4 229 5.655
17 3 230 5.937
18 2 231 6.425
19 1 232 7.340
20 0 233 9.137
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Chapter 4

Features

• Simple design. POMELO is based on a simple non-linear feedback func-
tion F. Function G and H involves simple randommemory accesses. POMELO
does not rely on any existing hash function or cipher in the design.

• Easy to implement. The algorithm description can be easily translated
into programming code.

• Easy to configure. The memory size is 213+m cost bytes; the number of
operations is proportional to 2m cost+t cost.

• Efficient. In POMELO, large memory can be used. For example, on the
Intel i7-4770K processor, it takes 0.28 seconds to hash a password when
256 MB state is used.

• Strong against the low-memory attack. When t cost = 0, if only half of
the memory is used in the attack, the computational cost is increased by
at least 128 times; if only one quarter of the memory is used in the attack,
the computational cost is increased by at least 65536 times.

• Strong against cache timing attack since the first half of POMELO uses
password-independent memory accesses.

• Strong against attacks using GPU since large memory can be used, and
password-dependent random memory accesses are used in the second half
of POMELO.

• Frequent accesses to the 256KB CPU cache. In the attack using dedi-
cated ASIC or FPGA, there is additional cost of implementing fast cache;
otherwise, the attack speed would become slower for large state.

• Support large input/output sizes. The password is up to 256 bytes, the
salt is up to 64 bytes, the output is up to 256 bytes.
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• 66 extra input bytes are reserved for the extension of the algorithm (such as
the inclusion of secret key). These 66 bytes can be assigned to S8[320] · · ·S8[383],
and S8[390], S8[391] in Step 2. (Note that byte S8[389] is used for KDF.)
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Chapter 5

Tweaks and Rationale

In the tweak, we process four 64-bit words in parallel, and we perform two
memory accesses in each step of function G and H.

• Four 64-bit words are now processed in parallel.
Reason: To efficiently use the 256-bit AVX2 instructions on the new gen-
eration CPUs. The SIMD instructions are used in a number of recent
cryptographic designs, such as stream ciphers Salsa [5], Chacha [6], hash
functions BLAKE [1], BLAKE2 [2], JH [15] and authenticated ciphers
NORX [3] and MORUS [16].

• Two table lookups are used in each step of function G and H. (In the
previous version of G and H, one table loop is used in every four steps of
function G and H.)
One table lookup is within the whole range of the state using index global
which is set to a pseudorandom number every 32 steps, then its value is
increased by one every step.
Another table lookup is within (at most) 256KB around the element S[i]
in the ith step. index local is used, and its value is set to a pseudorandom
number in every step.

Reasons:
1) Ensure that in every step, there are table lookups so that it is expensive
for the attacks using SIMD.
2) To speed up the memory access by using the DRAM row buffer. DRAM
uses an 8KB row buffer (for every access to the DRAM, 8KB in that row
gets read into the row buffer, and it is fast to access the data in the row
buffer). For POMELO with large state size, using index global in table
lookup allows us to access data in the row buffer efficiently (1KB data at
sequential addresses are accessed).
3) Sequential data access is not good for resisting the attack using low
memory, so we need to use index local in table lookups to make the low
memory attack expensive (the reason is to make it expensive to store the
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partial state. The details are provided in the security analysis in Section
2.2). Although in every step index local is updated to a pseudo random
number, it is not expensive to loop up table using index local since the
CPUs have a relatively fast and large Level 2 cache.

• The nonlinear feedback function in function F is modified.
Reason: It is because that we now changed the word size from 64-bit to
256-bit.

• The random number generation is changed.
Reason: Simply allow the easy derivation of pseudorandom numbers (pseu-
dorandom numbers are being used in table lookups).
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Chapter 6

No hidden weakness

The designers of POMELO state here that there are no deliberately hidden
weaknesses in POMELO.
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Chapter 7

Intellectual property

POMELO is and will remain available worldwide on a royalty free basis, and
that the designer is unaware of any patent or patent application that covers the
use or implementation of the submitted algorithm.
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