
Algorithm: MCS_PHS

Principal submitter: Mikhail Maslennikov

Revision: February 24, 2014

INITIAL SECURITY ANALYSIS MCS_PHS

In this document password hashing scheme MCS_PHS [1] will be analyzed for resistance to the following
attacks:

1) attacks on hashing algorithm MCSSHA-8;
2) dictionary attack and brute force attack;
3) other security measures.

Attacks on hashing algorithm MCSSHA-8.

MCSSHA-8 hash algorithm was developed based on the requirements [4], but it use nonlinear feedback

shift register (NFSR) with byte elements, so it’s possible to calculate hash with any length in bytes, not
only 28, 32, 48 and 64 bytes as in NIST requirements. In MCSSHA-8 hash length in byte can be any
value from 4 to 64 and any hash values for same messages should be different as random values.

This algorithm is a continuation of a series of hash algorithms MCSSHA family (MCSSHA 3 – 6). During
the SHA-3 competition independent experts Jean-Philippe Aumasson and María Naya-Plasencia have
found some inconsistencies algorithms MCSSHA 3 - 6 requirements NIST [5].

MCSSHA-8, like previous versions of MCSSHA has algorithms, consist from three stages: preprocessing,
pre-hash and final hash computation. Preprocessing and pre-hash computation for MCSSHA-8 are same,
like MCSSHA-5 and 6. But final hash computation is different from all previous versions [2].

In final hash computation for MCSSHA-8 we build two hash values length N from state of NFSR length

2N. Final hash is bitwise XOR of this two hashes. In this case described in [5] methods become
ineffective.

Dictionary attack and brute force attack

As noted in [6], “the simplest way to crack a hash is to try to guess the password, hashing each guess,
and checking if the guess's hash equals the hash being cracked. If the hashes are equal, the guess is
the password. The two most common ways of guessing passwords are dictionary attacks and brute-
force attacks. A dictionary attack uses a file containing words, phrases, common passwords, and other
strings that are likely to be used as a password. Each word in the file is hashed, and its hash is compared

to the password hash. If they match, that word is the password. These dictionary files are constructed
by extracting words from large bodies of text, and even from real databases of passwords. Further
processing is often applied to dictionary files, such as replacing words with their "leet speak" equivalents
("hello" becomes "h3110"), to make them more effective.

A brute-force attack tries every possible combination of characters up to a given length. These attacks

are very computationally expensive, and are usually the least efficient in terms of hashes cracked per
processor time, but they will always eventually find the password. Passwords should be long enough
that searching through all possible character strings to find it will take too long to be worthwhile.
There is no way to prevent dictionary attacks or brute force attacks. They can be made less effective,
but there isn't a way to prevent them altogether. If your password hashing system is secure, the only
way to crack the hashes will be to run a dictionary or brute-force attack on each hash.”

http://crypto.systema.ru/mcssha/MCS_PHS%20(eng).pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://131002.net/data/papers/AN09.pdf
http://crypto.systema.ru/mcssha/MCSSHA-8%20(eng).pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://crackstation.net/hashing-security.htm

So it’s impossible to prevent dictionary or brute force attack. In MCS_PHS we can find some properties

that allow to increase complication of using these methods.

Using many different hash functions. In MCS_PHS scheme: first step – calculating from password and
salt hash length 64 bytes and then step by step decrease hash length using MCSSHA-8 length N – 1 for
hash length N. For each N hash algorithm MCSSHA-8 with hash length N will be marked as MCSSHA8_N
and hash for message M – MCSSHA8_N(M). For any message M and different N1 and N2 the values
MCSSHA8_N1(M) and MCSSHA8_N2(M) are random and practically independent. So, if we want to use

table of hash values, we need tables for MCSSHA8_N for each N or one table for all MCSSHA-8 iteration
from 64 to 32, whose construction is more complex.

Other security measures

1. Security properties expected from MCS_PHS.

- random looking output;

- one-way;
- collision resistant;

- immune to length extension.

Random looking output. MCS_PHS scheme used only MCSSHA-8 hash algorithm that use NFSR
transformation for byte sequence. In feedback function of NFSR present substitution π, which properties

allow to obtain the output values do not differ from random and equiprobable – see 10.1.1 of [7].

One-way and collision resistance. Because NSFR worked with delays (see [2]), so there are very
complicated non-linear equations for hash values. It’s practically impossible to find any another method
to decide this eqiations exept brute force.

Immune to length extension. All algorithms from MCSSHA family doesn’t use padding. Password length
and salt length present in block for first hash MCSSHA8_64. If we change in MCS_PHS some length or
some bytes in password or salt then final result of MCSSHA8_64 hash will be different as random and
equiprobable.

Possible attack on MCS_PHS

This kind of attack was described in 5.1 [8].

The attack on PBKDF1 is based on an obvious relation between keys derived using the same salt. For

any salt s and two iteration counts c0 < c1, let yi =F(p, s, ci) = H(ci)(p_s). Then, it is easy to see that y1

= H(c1−c0)(y0). This relation allows an attacker to distinguish y0 from a random function with one F

query (s, c1) and (c1 − c0) H queries. Note that if the key y0 = H(c0)(p_s) were ever compromised for
some reason, then any key derived using the same salt s and an iteration count larger than c0 would all
be compromised. This might happen in practice if the user (or the security administrator of the system)
decides to increment the iteration count. Therefore, it is a good practice in general to use different salt
values in deriving different keys.

To protect against this attack in MCS_PHS in final stage we use pre-derived key, and then calculate two

hashes from this key for preparing final derived key. So if final derived key will be compromised, attacker
couldn’t restore pre-derived key using only final derived key and couldn’t continue hashing cycle.

EFFICIENCY ANALYSIS MCS_PHS

In the table 1 compare speeds for PBKDF2 with SHA-1 and MCS_PHS. Test conditions: Intel Core i7
3537U CPU, @ 2,00 GHz, 2,50 GHz.
PBKDF2 was build using OpenSSL public codes.

http://crypto.systema.ru/mcssha/MCSSHA-3.pdf
http://crypto.systema.ru/mcssha/MCSSHA-8%20(eng).pdf
http://palms.ee.princeton.edu/PALMSopen/yao05design.pdf

Table 1. Comparing speed for PBKDF2 with SHA-1 and MCS_PHS

Algorithm Derived key length Cycles Time (sec.)

PBKDF2 20 4096 0,047

MCS_PHS 32 4096 0,055

PBKDF2 20 10000 0,114

MCS_PHS 32 10000 0,132

PBKDF2 20 1000000 10,549

MCS_PHS 32 1000000 12,095

PBKDF2 20 16777216 (extremely
long from RFC 6070)

184,252

MCS_PHS 32 16777216 213,078

MCS_PHS 64 16777216 400,998

In the table 2 compare speeds of MCS_PHS with different parameters.

Table 2. Speed MCS_PHS with different parameters.

Initial memory (byte)
(m_cost)

Derived key length Cycles (t_cost) Time (sec.)

256 32 0 0,001

256 32 1000 0,014

256 64 0 0,000

256 64 1000 0,026

32 32 0 0,001

32 32 1000 0,015

32 64 0 0,000

32 64 1000 0,029

Required memory

Required memory consist from memory for MCSSHA-8 hash algorithm and memory for MCS_PHS
scheme. As noted in [2], required memory for MCSSHA-8 hash algorithm not above 0,5 KB. Memory
for MCS_PHS scheme is not above 0,5 KB too. So, total memory is not above 1 KB.

Conclusion

For MCS_PHS scheme applicated only common methods like brute force and dictionary attack. Costs of
testing can be adjusted by the parameters MCS_PHS. Efficiently of MCS_PHS comparable with PBKDF2
with SHA-1.

References

1. Mikhail Maslennikov. Password hashing scheme MCS_PHS.
http://crypto.systema.ru/mcssha/MCS_PHS (eng).pdf

2. Mikhail Maslennikov. Secure hash algorithm MCSSHA-8.

http://crypto.systema.ru/mcssha/MCSSHA-8 (eng).pdf

3. PKCS #5: Password-Based Cryptography Specification. Version 2.0. RFC 2898.

http://crypto.systema.ru/mcssha/MCS_PHS%20(eng).pdf
http://crypto.systema.ru/mcssha/MCS_PHS%20(eng).pdf
http://crypto.systema.ru/mcssha/MCSSHA-8%20(eng).pdf

4. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash

Algorithm (SHA–3) Family. NIST, Docket No.: 070911510–7512–01.

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

5. Jean-Philippe Aumasson and Mar´ıa Naya-Plasencia. Cryptanalysis of the MCSSHA Hash
Functions.
https://131002.net/data/papers/AN09.pdf

6. https://crackstation.net/hashing-security.htm

7. Mikhail Maslennikov. Secure hash algorithm MCSSHA-3.

http://crypto.systema.ru/mcssha/MCSSHA-3.pdf

8. Frances F. Yao and Yiqun Lisa Yin. Design and Analysis of Password-Based Key Derivation

Functions.
http://palms.ee.princeton.edu/PALMSopen/yao05design.pdf

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://131002.net/data/papers/AN09.pdf
https://crackstation.net/hashing-security.htm
http://crypto.systema.ru/mcssha/MCSSHA-3.pdf
http://crypto.systema.ru/mcssha/MCSSHA-3.pdf
http://palms.ee.princeton.edu/PALMSopen/yao05design.pdf

