
Parallel

Steve Thomas (Steve at tobtu dot com)

Specification

Symbols/functions
** Exponential
% Modulus
|| Concatenate two strings
^ Xor two strings
hash(string) Calculates a hash of a string
HASH_LENGTH Length of hash output in bytes
truncate(string, N) Truncates a string to N bytes
zeros(N) Creates an N byte string of zeros
WRITE_BIG_ENDIAN_64(N) Converts an integer into a string
length(string) Return the byte length of a string

Password hash
Inputs:
string password
string salt
integer t_cost
integer outlen

Algorithm:
t_cost_1 = t_cost % 2 ** 16
t_cost_2 = floor(t_cost / 2 ** 16)
t_cost_upgrade = floor(2 ** floor((t_cost_2 - 1) / 2) * (3 - (t_cost_2 % 2)))
 = 1, 2, 3, 4, 6, 8, 12, ... (Note floor(-1 / 2) = -1)
t_cost_parallel = 1920 * floor(2 ** floor((t_cost_1 - 1) / 2) * (3 -
(t_cost_1 % 2)))
 = 1920 * {1, 2, 3, 4, 6, 8, 12, ...} (Note floor(-1 / 2) = -1)

if outlen > HASH_LENGTH
return error

key = hash(hash(salt) || password)

// Work
for i = 0 to t_cost_upgrade - 1

// Init work
work = zeros(HASH_LENGTH)

for j = 0 to t_cost_parallel - 1
work = work ^ hash(WRITE_BIG_ENDIAN_64(j) || key)

// Finish
key = hash(hash(work || key))
key = truncate(key, outlen) || zeros(HASH_LENGTH - outlen)

return truncate(key, outlen)

KDF
Inputs:
string password
string salt
integer t_cost
integer outlen

Algorithm:
t_cost_parallel = 1920 * floor(2 ** floor((t_cost - 1) / 2) * (3 - (t_cost %
2)))
 = 1920 * {1, 2, 3, 4, 6, 8, 12, ...} (Note floor(-1 / 2) = -1)

key = hash(hash(salt) || password)

// Init work
work = zeros(HASH_LENGTH)

// Work
for i = 0 to t_cost_parallel - 1

work = work ^ hash(WRITE_BIG_ENDIAN_64(i) || key)

// Finish
i = 0
while length(out) < outlen

out = out || hash(READ_BIG_ENDIAN_64(i) || work || password)
i = i + 1

return truncate(out, outlen)

Statement
There are no deliberately hidden weaknesses (backdoor, etc.).

Initial Security Analysis

This is best for low memory applications or when FPGAs or GPUs are present. It's very simple
and is as resistant to collisions as the underling hash function.

The "outlen" for the password hash should be no less than 16 bytes and doesn't need to be more
than 32 bytes. A 16 byte minimum is to prevent simple collisions because of the birthday
paradox. The suggested max of 32 bytes is to prevent wasted space storing a large hash. Since
there is virtually no chance of a collision at that size. The rest assumes you are between those
values. The KDF has no such suggested limits.

I'm a fan of a three step password KDF:
1. Transform password and salt into a fixed size value "key"
2. Generate a "proof of work" value dependent on the key
3. Extract the output key from the proof of work value and the password

Step one makes sure the second step's runtime doesn't depend on the password's length. Step
three makes sure any entropy lost in step two is reclaimed. We can claim that if proof of work
value can be guess in at least the amount of work needed to generate the proof of work value
then the output key is at least as hard as the minimum of the cost of guessing the key and the cost
to guess the password * cost of to generate proof of work value.

For step one I picked "hash(hash(salt) || password)" to avoid simple collisions given full control
of salt and password. For HMAC(key:password, message:salt) you can find a collision by having
a password be larger than the block size. I wanted to avoid endian issues with hash(saltSize || salt
|| passwordSize || password). Although if you have a 255 byte max length for salt then this would
work hash(saltSizeUint8 || salt || password). Anyways there really isn't anything wrong with these
collisions, but since they are easy to avoid why not.

For step two I originally chose "hash(i || j || key)" because it is a good balance between optimized
defender, unoptimized defender, and attacker. Optimized defender will precalculate the first
round or two with "i" and unoptimized defender won't. The attacker will also precalculate the
first round or two with "i" and might choose to precalculate "j" too, but the attacker probably
won't because of the extra complexity and memory usage for only a round or two. Big endian
was chosen so an optimized defender using a hashing algorithm that uses 32 bit words (e.g.
SHA1 or SHA256) can precalculate three rounds since the high 32 bits of "j" change
infrequently or don't at all.

I removed "i" because it wasn't needed. It was originally there to prevent hash collisions between
keys of different upgrade rounds, but the attacker would never keep track of these to exploit this.
Also the probability of a collision is so low that it shouldn't ever happen under normal
circumstances. Now that it's gone the differences between optimized defender, unoptimized
defender, and attacker are smaller.

Efficiency Analysis

The attacker-defender ratio is near 1. Any advancements in cracking are advancements for the
defender. If ASICs come out that can crack this hash can be used by the defender.

Intellectual Property Statement

The scheme is and will remain available worldwide on a royalty free basis, and I am unaware of
any patent or patent application that covers the use or implementation of the submitted
algorithm.

Tweaks

The only real change was the removal of "WRITE_BIG_ENDIAN_64(i)" from the password
hash. The KDF is unchanged. This was done to lower the difference between unoptimized
defender and attacker. As an added bonus the password hash and KDF are more similar.

I originally meant for this to be used with any hashing algorithm. I was using SHA512 as a place
holder. In the original paper when I mentioned the hash function, instead of saying SHA512, I
said "the underling hash function".

Fixes (not tweaks but errors in the documentation):
t_cost_parallel was suppose to be multiplied by 1920 but not done in the pseudocode.
Renamed t_cost_sequential to t_cost_upgrade do to confusion of it's purpose.
Formatting: extra spaces and mismatched parentheses.

