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Abstract
The flaws of current and previous methods of utilization, storage, and conversion of             
passwords into secure keys, namely plaintext, hashing, and key derivation are           
explored. A novel, yet simple key derivation algorithm, Lanarea Derivation Function           
(Lanarea) is explored in depth along with its strengths and weaknesses and the             
features that it utilizes to solve the flaws exposed by previous algorithms.            
Individual sections of the algorithm are dissected in an attempt to explain their             
necessity. Finally, reasons as to why the algorithm cannot be easily and/or            
efficiently brute forced with commodity hardware (GPGPUs), specialty hardware         
(FPGAs), and custom hardware (ASICs) are analyzed.

Introduction
Storing passwords in plaintext is highly insecure, because if an attacker breaks into             
the database or file used to store the passwords, they can use the resulting              
passwords with any other systems that any given user might have an account on.              
The simplest method of solving this problem, is to use a cryptographic hash with              
the password as an input (like SHA1 or BLAKE2); the output is stored, and to verify a                 
user, the password is hashed again at which time the resulting output is checked              
against the output stored in the database. This is better because now an attacker              
cannot easily acquire the password for a user from the database.

However, an attacker with sufficient compute power can simply brute force a hash             
by trying lists of combinations of common words and techniques; essentially           
constructing passwords similar to the manner that most people create theirs. Since            
any password translates to a fixed output, once a single password/hash           
combination is broken, all of the hashes that match that combination are also             
instantly known [2]. The simplest method of combatting this is to use a salt, but               
then another issue remains: hashes are designed to be fast [3].

Given that hashes are designed to be fast, even though the number of possibilities              



increases vastly, using a GPGPU or even a set of GPGPUs, massive array of              
passwords can be cracked simultaneously in negligible time [1]. The solution to this             
is to use, what is known as a Key Derivation Function (KDF).

A KDF is designed to take time to compute; that way, attackers are slowed in brute                
forcing passwords. Common KDFs include PBKDF2 [4], bcrypt [5], and scrypt[6]. 

PBKDF2’s main advantages are in its simplicity and configurability; but it fails in that              
it is easily parallelized. Since it is an extremely straightforward, simple algorithm            
that is being repeated over and over based on the output of the previous algorithm,               
the task greatly yields itself to GPGPU’s and ASICs, especially considering how            
relatively little memory is required to implement any of the calculations in the             
algorithm.

bcrypt’s main advantages are that it is heavily serial and that it has a long,               
expensive setup phase. However, it can still be parallelized strongly; instead of            
parallelizing within the calculation level, GPGPU parallelization can be still be done            
by calculating several combinations in parallel, since memory accesses are highly           
predictable. Since bcrypt does not use large amounts of memory either, efficient            
ASICs can also easily be created for the enormously fast brute forcing of hashes.

scrypt’s main advantage is that it requires larger amounts of memory to access.             
This used to be quite an issue, however, recent developments have resulted in             
many implementations for GPGPUs [7][8][9] and ASICs are currently available for           
preorder [10].

Lanarea
Lanarea Derivation Function (pronounced “lon-na-ray-yuh”) is a new KDF that is           
designed to be extremely difficult to execute in parallel on a GPGPU or ASIC. It               
uses a simple setup algorithm followed by a rather convoluted scheme to rearrange             
and apply data as the main loop for the calculations, which finally ends with a               
simple algorithm to extract an output key of any length that is an integer multiple of                
32 bytes. The function can take an input password of any nonzero length along with               
a salt of any nonzero length. It is also configurable, as the pseudorandom function              
(PRF) used internally can be replaced with any cryptographically secure PRF that            
takes a variable length input along with a variable length salt and provides an              
output of 32 bytes. For the default Lanarea function, PRF used internally is BLAKE2b              
[16].



Description

Setup

Input:
Cr The memory (RAM) cost of the function

 (input, salt)F   A cryptographic pseudorandom function with an

optional salt
Constants:

p ...p )( 0 127 The first 128 bytes of Pi in raw format (0x3243F6...)

e ...e )( 0 127 The first 128 bytes of e in raw format (0x2B7E15...)

Output:
f ...f )( 0,0 (C ×16), 16r A matrix for use in the core phase

1. i ...i )  (p ...p )( 0 127 ←   0 127

2. i ...i )  (e ...e )( 128 255 ←   0 127

3. i ...i )  0( 256 287 ←  
4.   C 6m ←   r × 1
5.   16n ←  
6. for  to  dox = 0 m
7. for  to  doy = 0 n
8. h ...h )  F  (i ...i )( 0 31 ←   0 287

9.   hfx,y ←   y

10. i ...i )  (h ...h )( 256 287 ←   0 31

11. end for
12. end for

This simple setup function does something rather simple: it provides an initialized            
matrix that is identical for any given size. The purpose of this is that the cost of                 
this could be easily amortized by caching the initialized matrix across invocations            
of Lanarea. The usefulness of this is that it allows applications such as             
authentication servers to quickly process passwords while providing negligible         
benefit to an attacker, as little time ought to be spent in the setup phase.

Core Phase

Input:
Cr The memory (RAM) cost of the function

C t The time cost of the function

f ...f )( 0,0 (C ×16), 16r The initialized field from the setup function



P ...P )( 0 a−1 The password as an octet stream of  lengtha
S ...S )( 0 b−1 The salt as an octet stream of  lengthb
 (input, salt)F   A cryptographic pseudorandom function with an

optional salt
Output:

h ...h )( 0 31 The output of the last hash invocation from within

the core function
s ...s )( 0 C ×16×16r A stream of octets to be used in the key extraction

phase

1.   C 6m ←   r × 1
2.   16n ←  
3.   C  C t ←   t × 4
4.   CCr ←   r ×m × n
5. h ...h )  F  (P ...P , S ...S )( 0 31 ←   0 a−1   0 b−1

6. for  to  do  0x =   C t
7. for  to  doy = 0 m
8. for  to  doz = 0 n
9.   (y  h ) mod mr ←   +   z

10.   (r  f ) mod mc ←   +   y,z
11.   (r  f ) mod mr ←   +   r,z
12.   fc ←   c,z
13. if  thenc mod 2)( ≡ 0
14.   ROL (c, r)c ←    
15. else
16.   ROR (c, r)c ←    
17. end if
18. if  thenc mod 4) ( ≡ 0
19.   (f   h ) mod 256fy,z ←   y,z +   z

20. else if  thenc mod 4)( ≡ 1
21.   f   hfy,z ←   y,z ⊕   z

22. else if  thenc mod 4)( ≡ 2
23.   (f   h ) mod 256fy,z ←   y,z −   z

24. else
25.   f   ¬hfy,z ←   y,z  ⊕   z

26. end if
27. end for
28. for  to  do  0z =   Cr
29.   z mod nc ←  



30.   D (z, n)r ←    
31.   fsz ←   r,c
32. end for
33. h ...h )  F  (s ...s )( 0 31 ←   0 C  − 1r

34. end for
35. end for

Notes:
1. Line 14: ROL(value, shift) is a left bitwise rotate (circular shift) on a single byte
2. Line 16: ROR(value, shift) is a right bitwise rotate (circular shift) on a single byte
3. Lines 21, 25: is used to signify a bitwise XOR (exclusive disjunction) operation ⊕
4. Line 25:  is used to signify a bitwise NOT (complement) operation ¬

5. Line 30: D(i, w) is an abbreviation of the following expression, used to create an               
irregular access pattern:
((w  i mod w) mod w)  (floor ( ))) mod w  (w  )))( −   +   i

w +   × ( i
w×w  

The core function can be subdivided into a few portions. Lines 8-26 combine the              
hash with a row within the matrix. Lines 9-12 do pseudorandom read accesses,             
ensuring that the entire matrix must be stored in random access memory (RAM),             
thus simultaneously negating any advantages that a given CPU’s cache predictor           
would usually yield. Additionally, this would hinder the use of ASICs to brute force              
the function, because the pseudorandom accesses cannot be optimized even with           
prior knowledge of the algorithm, thus forcing continuous memory accesses over a            
larger area of memory.

Lines 13-17 and lines 18-26, especially the latter, make the use of a GPGPU to               
accelerate brute forcing extremely difficult, if not worthless, since either branches           
or a jump table must be used in order to satisfy the use of different functions that                 
are dependent upon a pseudorandom value. Given that GPGPUs are simply           
massively SIMD[11][12], branching is extremely expensive, and any more than a few            
occasional branches can negate the accelerations provided by the use of a GPGPU.             
On a CPU, the branches would also be highly expensive, given that the branch              
predictor will be unable to predict pseudorandom conditional branches, however,          
this can be slightly amortized by the use of a jump table [13].

The expression on line 30, as explained in note 5, uses a rather curious access               
pattern that can be scaled to various square data block sizes [15], which prevents              
the exploitation of spatial and temporal cache locality [14]. Since the memory cost             
of the algorithm can be changed, any attacker that wished to utilize an ASIC would               
be forced to either have small amounts of local memory complemented by            
additional off-chip memory (with the benefit of more simultaneous cracking cores)           
at the expense of external memory access cores; or, to have larger amounts of              



local memory (with the detriment of fewer simultaneous cracking cores) at the            
expense of having unused memory until the memory cost is increase and the             
future loss of the advantages yielded by said ASIC (when the memory cost             
exceeds the size of the memory available per core on chip).

Key Extraction Phase

Input:
h ...h )( 0 31 The output of the last hash invocation from within

the core function
s ...s )( 0 a−1 A stream of octets of length a
L The length of the output key in bytes; must be a

multiple of 32
 (input, salt)F   A cryptographic pseudorandom function with an

optional salt
Output:

k ...k )( 0 L−1 A key composed of a stream of octets: the result of

the key derivation function

1.  L ←   L32
2. for  to  dox = 0 L
3. h ...h )  F  (s ...s , h ...h )( 0 31 ←   0 a−1   0 31

4. ...k )  (h ...h )(kx×32 (x×32) + 31 ←   0 31

5. end for

The key extraction function is nothing particularly fancy; it uses the keyed PRF to              
create a result 32 octet stream, which is added to the output stream of octets until                
the length requested has been satisfied. Each round uses the result of the previous              
round as a key.

Analysis

Hand optimized implementations will likely not be more than 10% faster than the             
compiler optimized+profiled build of the algorithm, because the algorithm is highly           
serial and there are few possible optimizations.

ASICs/FPGAs

seem to be a pressing concern for security today, as custom circuitry can be              
optimized to take every advantage of any parallelizations along with any other            



available optimizations, after which the circuit can be massively duplicated across           
the die, yielding absurdly large cracking power to potential attackers. Particular           
techniques that Lanarea uses to combat this are discussed in the paragraphs            
following the core function; here is a short summary:

❖ Pseudorandom Read Accesses (PRA): by doing partially pseudorandom reads         
across the entire matrix, any ASIC design will be force to either hold the              
entire matrix within the on-chip ram (thus limiting parallel core count) or to             
do frequent accesses to external memory banks (thus limiting serial          
execution speed)

❖ Irregular Access Pattern (IAP): the irregular access pattern not only forces           
memory issues similar to the above, it also imposes the requirement for            
additional circuitry, thus further limiting the number of parallel cores that           
may be used on a single chip

❖ Heavily Serial Operations (HSO): the operations used in Lanarea are heavily           
serial (including the mixing stage - the next operation’s random access may            
be the current operation’s write - RAW dependency [17]), and as such,            
parallelization cannot be done easily within the algorithm, meaning that          
portions of a circuit will have to be inactive for extended durations and the              
individual throughput of any given cracking core will be lower in comparison            
to other algorithms.

❖ Nonuniform Section Timings (NST): various sections of the algorithm take          
widely differing amounts of time, thus, pipelining cannot be done using the            
internals of the algorithm, as there will be major stalls quite frequently. A             
nonuniform pipeline would not work either, since the mixing stage has           
pseudorandom time, within a set of limits, and as such, there would still be              
stalls in a nonuniform pipeline.

These features of the algorithm make the brute force cracking of Lanarea via the              
use of ASICs rather infeasible.

GPGPUs

are often used to crack KDFs (by trying many passwords in parallel), but             
attempting to do so with Lanarea would be likely impossible:

❖ PRA: GPGPUs are designed to process data with uniform memory accesses           
and to process data within blocks, nonuniform memory accesses are far           
slower on a GPGPU due to this.

❖ NST: the SIMD nature of a GPGPU is incompatible with nonuniformity in            
timing across lanes of execution; stalls and delays would occur quite           
frequently due to this.



❖ Pseudorandom Mixing Functions (PMF): GPGPUs’ SIMD nature means that         
they cannot branch like this within every single byte’s mixing round, and as             
such, this strongly eliminates the possibility of an efficient GPGPU          
implementation of a Lanarea brute force cracker.

CPUs

are what Lanarea is designed to run on; nevertheless, Lanarea also tries to ensure              
that various CPUs of various generations still take roughly the same amount of time              
per invocation:

❖ PRA: doing pseudorandom accesses mean that the L1 cache predictor will           
not be able to correctly predict the data that will be loaded next. This              
negates the effects of a cache predictor, putting CISC CPUs such as            
x86/AMD64 on par with RISC CPUs such as ARM in terms of memory             
accesses (although platforms such as x86 will still have a fair lead due to              
their large caches).

❖ IAP: has the same effect on most processors as PRA, for mostly the same              
reason, thus further pushing complex platforms like x86 (mainly used in client            
and server computers) onto par with less powerful platforms, like ARM (which            
is mainly used in mobile and other low-power devices).

❖ HSO: negates the advantages yielded by the out-of-order, superscalar nature          
of platforms such as x86 [18], since many instructions will have to wait for              
previous instructions to complete, thus causing a pipeline stall. Since simpler           
processors often have shorter pipelines, they gain an advantage here, albeit           
a small one, which, nevertheless, brings them even closer to par with more             
complex architectures. Additionally, the serial nature of the algorithm means          
that the only real method to accelerate execution of the algorithm would be             
to increase the core clock frequency; this is mitigated by the fact that most              
modern processors’ native clock frequencies all lie within an order of           
magnitude or so of one another.

❖ PMF: since the branch predictor cannot predict pseudorandom conditional         
branches, it is more performant to utilize a jump table. As almost every             
modern processor has some sort of support for jump tables, this further            
negates the advantage that complex processors have over simple ones,          
since their powerful branch predictors become worthless and can even be           
detrimental in situations like this.

Security

Lanarea itself is secured rather well in that most of its security is dependent upon               
the PRF used for its internal computations, BLAKE2b. BLAKE2 has been verified quite             



thoroughly and appears to be extremely safe to use. In the event that severe              
issues are found with BLAKE2, Lanarea can be trivially reconfigured to use any other              
PRF that can accept a variable length input along with a variable length salt and               
output a 32 octet result.

Lanarea’s key derivation is believed to be secure for the following applications:

● Authentication
○ server-client (web, etc.)
○ system level (*nix shadow, etc.)

● Encryption
○ stream (sockets, etc.)
○ long term (disk, flash, etc.)

 ●

Conclusion
While algorithms such as HMACs, PBKDF2, bcrypt, and scrypt have served us for a              
long time and served us rather well, it is time for them to retire because there are                 
too many issues that a potential attacker can exploit to allow them to brute force               
the passwords. A new key derivation function is sorely needed to mitigate this             
issue, and Lanarea does it rather nicely while also taking care of some of the other                
issues that the previous KDFs had, such as:

❖ drastically faster completion on one platform versus another
❖ easy parallelization that has been exploited by attackers
❖ complexity that hinders the ease of understanding the algorithm from          

scratch along with making it slightly more difficult to implement
❖ mind numbingly boring names
❖ etc.

Lanarea seeks to solve this issue by providing a platform independent,           
non-parallelizable, simple, creatively named KDF that executes with relatively         
consistent speed. Interestingly enough, in the process of designing the algorithm ,it            
was found that the algorithm took too long and was thus modified so it could run in                 
real time.

Miscellanea
At the time of writing, there are no backdoors or weaknesses whatsoever in the              
algorithm Lanarea that I possess knowledge of that have not been described to the              



best of my abilities above.

I, Haneef Mubarak, release any intellectual property that I may hold on the algorithm              
Lanarea or it implementation into the public domain, where it shall forever remain,             
available globally on a royalty free basis, to the furthest extent permitted by law. I               
am fully unaware of any patent or application that covers any portion of the              
algorithm Lanarea or its implementation.
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