AntCrypt*

Proposal for the Password Hashing Competition

March 31, 2014

Markus Diirmuth, Ralf Zimmermann

Horst Gortz Institute for I'T Security
Ruhr University Bochum
Universitatsstr. 150
44780 Bochum, Germany

* The name “AntCrypt” was chosen because the core of our construction resembles
an anthill: in both, a huge quantity of small workers carry our tiny tasks in apparent
chaos, however, in reality this “chaos” is orchestrated so that all results come together
and form the final result.

1 Introduction

Arguably the biggest threat to password hashing schemes stems from GPUs,
FPGAs, and ASICs, who provide enormous computing power which can speed up
verification of a batch of passwords (e.g., in an offline guessing attack). Common
constructions for password hashes use, at their core, two different methods to
limit speed-up of verification operations.

— First, aggressively iterated constructions proportionally increase the compu-
tation times for verification on all platforms. The (well-understood) problem
with constructions solely relying on iterated constructions is that they are
typically quite fast when implemented on GPUs and FPGAs, as they can be
parallelized very well.

— Frequent memory access (e.g, memory-hardness and similar ideas) are in-
tended to slow down implementations on hardware basically utilizing mem-
ory bandwidth and memory latency. Large memory requirements (such as
scrypt) will force the attacker to access main memory (on GPUs), while
moderate memory usage (such as berypt) leaves the attacker with a trade-off
between using a large number of registers and thus voiding memory access,
or using fewer registers but accessing global memory.

One concern with berypt is that the size of the memory used in the compu-
tation is fixed to 4 kByte and cannot be changed, and that 4kByte is potentially
not enough memory to effectively thwart efficient implementations on FPGAs.
With scrypt, one concern is that the huge memory requirements are problematic
if deployed on servers handling frequent login requests, and make the server sus-
ceptible to denial-of-service attacks. Another potential concern is that memory
access is “relatively rare” in the sense that there is one hash function computa-
tion between two memory access operations.

In our proposal, we opt for a middle-ground, which seems to offer the best
benefit of both worlds:

1. Memory usage: We use moderate amounts of memory, tunable with a param-
eter from 256 Bytes upwards, where a reasonable choice seems to be around
32 kBytes. We ensure very frequent access to all regions of the memory,
similar to berypt and different from scrypt, to avoid previously mentioned
potential problems.

In addition, our construction makes use of a (to the best of our knowl-
edge novel) idea that aims to slow down implementations on GPUs and FP-
GAs/ASICs specifically.

2. Control-flow divergence: Our code will frequently branch depending on the
current state (and thus ultimately on the password), to (i) avoid good par-
allelization on GPUs, and (ii) increase the size of implementations (and thus
increase the cost and decrease the throughput) on FPGAs/ASICs.

2 The Key-Derivation Scheme

In this section, we will provide a description of our construction and comment
on the design choices. A more detailed discussion will follow in Section 3.

2.1 Parameters and Main Data Structure

Unless stated otherwise, all data types are 32-bit words. As the prototype of the
PHS function provides two cost parameters, we derive the internal parameters
from them as follows:

— state_bytes defines the amount of memory used for the state in bytes and

is defined as
state_bytes = m-COST+S

Analogously, state_words defines the number of 32-bit words the state con-
tains.

— inner_rounds defines the number of iterations for the inner loop, iterating
over all state_words state positions. We require a minimum of at least two
inner rounds as follows:

. m_cost
inner _rounds = max({ 16 J ,2)

— outer_rounds defines the number of iterations for the outer loop. We require
at least one outer round and define it as follows:

outer_rounds = max(t_cost, 1)

The primary data structure is a memory buffer buf = [prefix, memory]. The
prefix can be used as a to generate different hash values from the buffer. If not
stated otherwise, we refer to buf as the memory without the prefix.

In the algorithm, we use two such buffers: state of size state_words+1 32-bit
words, as well as a rehash buffer of 16+ 1 words. The size of rehash is equivalent
the output length of the primary hash function + 1 word as a prefix. These
buffers are accessed either on byte level as bytes [0, 1,..., (state_bytes + 3)] or
as words [{3,2,1,0},{7,6,5,4},...,{..., (state_bytes + 3)}].

2.2 Algorithm Definition

Algorithm 1 describes the basic structure of the derivation function. In the follow-
ing, we will describe the main functions init, update_entropy, update_state
and compute_output in more detail.

Algorithm 1 Pseudocode of AntCrypt

Require: t_cost > 0, m_cost > 0, outlen > 0, salt, pw,
Ensure: key

1: init(salt, pw) {Initialize state}
2: for i = 0 to outer_rounds do

3: update_entropy() {Distribute entropy over the state}
4 # The following loop is referred to as update_state()

5 for j = 0 to inner_rounds do

6 int_update_state() {Waste time operating on state}
7: end for

8: end for

9: compute_output() {Final output transformation}

Description of init(): The initialization function init () fills the empty state
memory with its initial content and is implemented in the reference implementa-
tion as the function phs_init (). Please note this function addresses the memory
byte-by-byte, not as 32-bit words.

1. The salt is copied to the beginning of the state memory. It is interpreted

byte-wise, i.e., state[0] = salt[0], state[l] = salt[1], ...
We use a fixed size for the salt (16 bytes as suggested in the proposal), and do
not see a reason for supporting variable sized salts: 16 bytes (128 bit) should
offer sufficient security against appropriate attacks and we do not need to
add any separator or length into the buffer when using a fixed length.

2. The password is appended to the array after the salt, also stored byte-per-
byte. The maximum length of a password accepted is state_bytes — 16 — 1
bytes to leave enough space for the salt, the password and an end-identifier.
The minimal state supported consists of 256 bytes. Thus, a 128 byte password
as required will always be accepted.

3. A “password-end” marker 0x80 is appended directly after the password and
the remaining space is filled with 0x00.

Description of update_entropy() The function update_entropy (which maps
to phs_upd_entropy() in the reference implementation) uses a hash function,
hashing the entire state. As common hash functions have a much smaller out-
put compared to state — e.g., 128 bit for MD5 or 512 bit for SHA-512 — we
need to extend these constructions to adapt for the larger output size. In the
implementation, we use the rehash buffer and its prefix to derive the new state.

Similar constructions are well-known in the cryptographic literature, and in
the random oracle model it is easy to prove that the resulting function constitutes
a secure hash function. Basically, we compute

h := H(state),

and then
s; =H(i| h)

and forming the next state as
S0,S81y-.-5Sk-

The “intermediate” hash value h is also used in the compute_output () func-
tion for an additional feature.

Description of update_state() The function update_state() accesses the
buffer state inner rounds X state_words times and aims at wasting CPU
cycles and efficiently slow down parallel computation on different platforms.
In the reference implementation, this function is implemented as the function
phs_upd_state().

Algorithm 2 Pseudocode of update_state()

1: for i = 0 to inner_rounds do
2: for j =0 to state_words do

3: res = (state[j] ROR i)

4: tgt_addr = res % state_words

5: reset idx permutation

6: for j =0 to #F do

T choose unused idx by evaluating res

8: res = Fjqy(res)

9: end for

10: state[tgt_addr] = state[tgt_addr] XOR res
11: end for

12: end for

Algorithm 2 describes the update algorithm. We use a set of functions F;(x),
where #F is the number of functions and use a calling sequence of these func-
tions, where every function is called exactly once. After all #F functions process
the data, the word at the target address is updated by using a bit-wise XOR.

Please note that the sequence is not pre-defined, but depends on the value
res (and thus the initial value state[j]). Thus, in theory, all #F! sequences are
possible.

The currently implemented functions (defined in phc.h) are given in Table 1.
Please note that the functions are currently being evaluated and may be tweaked
later.

Description of compute_output() The function compute_output() uses the
state memory after the last outer round to generate the derived key material.
It is implemented as phs_gen_output () in the reference implementation.

It consists of two steps, depending on the requested output length. If the
output length is less or equal to 512 bit, i.e., the output length of SHA-512, only
the first step is necessary.

/* integer operations */
#define FOO(X) ((X) + 0x01234567)
#define FO1(X) ((X) * Ox89ABCDEF)

/* bit operations */

#define FO2(X) ((X) >> 3)

#define FO3(X) (ROTR((X), 7))
#define FO4(X) ((X) ~ 0x01234567)
#define FO5(X) ((X) & OxFEFEFEFE)
#define FO6(X) ((X) | 0x02020202)

/* floating point operations */
#define FO7(X) ((uint32_t) (2147483648.L \

* sin (((double) X)/1000000000.L)))
#define FO8(X) ((uint32_t) (2147483648.L \

* cos (((double) X)/1000000000.L)))
#define FO9(X) ((uint32_t) (2147483648.L \

* tan (((double) X)/5000000000.L)))

/* 1/x: [1,2] -> [0.5, 1] (bijective) */
#define F10(X) ((uint32_t) ((double) (2 * 4294967296.L \
* (1 / (1.5 + (double) X / 4294967296.L)) - 0.75)))

Table 1. List of the functions F; used in update_state().

First, we generate the intermediate hash, which would be generated during
the next call to update_entropy. It basically is identical to the first step of
update_entropy (), i.e., we apply the hash function to the entire state:

h := H(state).

Depending on the desired output length, we use up to 64 byte from h, addressing
the buffer byte-wise and starting with byte 0.

In case more than 64 byte were requested, we use the prefix for the state,
initialized with 1, and hash the full state including the prefix to derive a new
intermediate value

h':= H(i || state).

We use the same function used in update_entropy() to derive a new state
from R, overwriting the previous state and append up to state_bytes bytes
to the output. This procedure can be repeated up to 232 — 1 times, effectively
producing more than 240FM-COSt bytes of key material.

This construction has another advantage: By storing the “intermediate” value
h as final output, we are able to recompute the “next” state. This means that we
can “resume” the computation of the state from a previously stored hash value,
i.e., we can retroactively increase the hardness with respect to an increased
parameter t_cost (cf. Section 3 for more details).

3 Design choices and remarks

Next, we comment on some of the design choices that underly our construction.

3.1 Implementation

One of our main intentions was to keep the overall structure and design as simple
as possible, as this facilitates analysis and implementations. This also means we
omitted some features from the implementation that are easy to add for a future
(reworked) version. For the same reason we omitted most optimizations of the
implementation and provide a rather straightforward implementation which is
presumably easy to analyze. If selected for the second round we would provide
an optimized version. The overall structure is very simple, with a clear distinc-
tion between the “cryptographically hard” step (update_entropy()), where we
use established cryptographic primitives, and the “computationally hard” step
(update_state()), where we are relatively free to do arbitrary computations
that achieve our goals.

Some features that can easily be added (and will be added in future versions):

Parallelism There is a very easy modification to make the computation par-
allelizable for the honest server that computes the hash. Instead of processing
each cell individually when computing the update_state(), we can read several
(for example 16) consecutive cells, compute their output in parallel, and then
write back simultaneously. (As we XOR the result on the target cell the order
of writing does not matter.) This provides sufficient parallelism for the honest
server, while not being advantageous for the attacker, as these parallel threads
are still diverging.

Eztending hardness Without further modifications, the above construction al-
lows the legitimate server to increase the hardness of an existing hash without
knowledge of the password, within certain constraints. It is necessary that the
intermediate hash is stored in it entirety, i.e., the output has at least 512 bit.
Furthermore, only the t_cost parameter can be increased (i.e., internally the
outer_rounds parameter), the m_cost parameter needs to be fixed. Increasing
the strength is very straightforward (and we will make code for doing so available
in the near future). As the final step compute_output () is equivalent to the first
part of the update_entropy() step (for an output length of 512 bit), we can
simply resume the computation from this step on by first completing the second
half, i.e., populating the entire state buffer from this value and then resuming
with the iterations, adding so many iterations that the wanted iteration count
is met, and finalizing with the final hashing.

3.2 Divergence and choice of the functions F,

The specific choice of the functions F; used in the construction depends on
a number of factors, including the attacker’s compute architecture. We are still

evaluating different choices for these functions, so the currently selected functions
are likely to change in future versions; any comments are appreciated.

Some important considerations are the following: If the functions take too
long to compute, then an attacker can potentially queue them up to compute
the same ones in parallel, thwarting the divergence of the threats. However, if
they are too fast to evaluate, then the “overhead” imposed by the computations
in the inner loop that are not part of the F;’s, e.g., computing the permutation,
reduces the effectiveness of the divergence. (As computing the permutation in-
curs some substantial overhead, we consider using just a random sequence of
indices; choosing a permutation, however, has the desirable property to rule out
a number of timing side channel attacks as discussed later in this text.)

The overlap between different functions Fj, i.e., the potential to execute
them in parallel, should be minimized; we attempted to achieve this by choosing
functions with distinct assembler instructions, additionally ensuring that they
are not easily transformable into each other. (Note the absence of the “bitwise
invert” function, which can be expressed with an XOR.)

On using floating point operations We are aware that using floating point op-
erations in such constructions is unusual, but we believe that they are helpful
in minimizing the overlap, and they are also quite costly to implement on FP-
GAs and ASICs. We avoid rounding errors by converting back each result to an
integer, thus being able to control any potential rounding error. But again, the
specific choice of the F is still somewhat experimental, and we might opt to
remove floating point instructions if they incur problems with portability.

4 Security

4.1 Cryptographic security

Our construction inherits its cryptographic strength quite directly from the se-
curity of the underlying hash function. We describe our construction using SHA-
512, but it can be easily substituted with any other hash function with sufficiently
large state/output size. We have selected SHA-512 as it is a widely accepted de-
sign which has proven security over several years, and implementations are easily
available in common libraries. In fact, it should be straight-forward to prove (in
the random oracle model) that, provided that the functions F}, are permutations,
or at least behave “sufficiently random”, then the overall construction behaves
like a random function.

In general, constructing secure hash functions is a delicate matter, and large
efforts have gone into the design of such functions. Therefore, we feel that it
is mandatory to rely on well-established constructions to achieve cryptographic
security instead of attempting to use home-made constructions. One of the beau-
ties of our construction is that we separate the task of providing cryptographic
strength from the task of slowing down verification, (cryptographic strength is
largely realized by the re-hashing done in update_entropy, putting minimal

requirements on update_state only, while the slow-down is largely realized in
update_state).

The only thing that is required to really inherit these properties is that the
applying the step update_state does not loose too much entropy. However, by
our construction, applying the sequence of the F, to the current state is always
a permutation, as we XOR, the output to the target value. (This is very similar
to the well-known Feistel structure, which also always is a permutation for arbi-
trary round functions.) And if one application of the sequence is a permutation,
than by repeating this argument, the entire function update_state constitutes
a permutation.

4.2 Speed up

The intended use of function update_state is to slow down the computation of
the password hash, thus this is the critical place to look for optimizations.

On CPUs On CPUs, we believe that only minor optimizations can be done.
The pseudo-random nature of the order of applying the functions F, means that
there is very little (constant) structure that can be exploited for optimizations.
Note that, when looking retroactively at one particular run, there will be struc-
ture that can potentially be exploited, however, as the structure changes for each
application of the permuted chain of F}’s such structure needs to be detected
during runtime. As the functions F, are very short (ranging from a single assem-
bler instruction up to a few), we believe that code for detecting and exploiting
such structure would most likely slow down the execution more than it helps in
speeding up.

Also note that we plan to consider other functions F), in the future, and we
hope to be able to provide a more formal argument regarding the potential speed
up in future versions of this document.

On GPUs On GPUs, these random permutations will lead to a substantial
amount of branch divergence, which means that the parallel executions of the
hash function for a parallel brute force attempt (running for different passwords)
will have divergent control flow. For “ideal” functions F, with no overlap, no
overhead outside the F),, and ideally random selection, we would expect a slow-
down equal to the number of functions, i.e., by a factor of 16. (Here “slowdown”
is comparing the runtime for the case with convergent execution, e.g., all threads
hashing the same password, with the runtime for divergent threads, e.g., when
hashing different passwords in each thread.) In practice, there is overhead, e.g.,
caused by the final XOR and the computation of the permutation, and the
functions have not entirely disjoint assembler instructions (e.g., we need some
re-scaling of the values for the floating point instructions), so these ideal goals
will likely not be met.

On FPGAs/ASICs While FPGAs and ASICs are very dangerous in terms of
efficient implementation of brute-force attacks, the construction was chosen to
render dedicated hardware attacks almost useless.

While many of the functions are easily mapped to hardware, floating point
operations come at a high price. We analyzed the available cores for Xilinx
Spartan 6, Virtex 6 and Artix 7 devices**. The CORDIC-core offers sine and
square-root with 8 to 48 bit operands. For 32-bit operation, the minimum area
is 3664 LUTs and 3588 FFs for sine (Spartan-6) and 975 LUTs and 1202 FFs
for square-root (Artix-7) and has a latency of more than 32 clock cycles.

The floating-point core provides addition/subtraction, division, square-root
and multiplication with configurable latency (time-area tradeoff) and may use
available DSP cores, and the area consumption is heavily dependent on these
configurations.

The use of more than one FPU function will significantly increase the area
and latency of the generation on FPGAs. In addition, to support all possible
sequences of the F; functions, the complexity of the routing will increase dra-
matically: Every output needs to be routed to every other function as input.
Thus, every function needs a large multiplexer, increasing the routing delay and
increasing the critical path.

The second limiting factor is the memory usage, as fast memory cores are
available but limited in size and number. To implement a 64 kByte state (m_cost
= 8) will already use about 29 18k-BRAMs on Xilinx FPGAs. Thus, the memory
area will become a limiting factor even with medium state sizes.

In practice, we think that using FPGAs or producing dedicated ASICs will
not be the first choice for an attacker, as the construction is by design very
cumbersome to implement and artificially adds latency, enforces complex routing
and needs area-consuming FPU arithmetic.

4.3 Side channel attacks

Storing the password in memory The password is written to the state in the
beginning and immediately overwritten by the output of the hash function. No
copy needs to be stored beyond the initialization of the state memory. This
should effectively prevent reading the password from memory.

(Cache) timing attacks The different functions F}, have usually, depending on the
platform, different execution times. This could lead to timing attacks or to cache
timing attacks. However, as we always use the same functions, just in differently
permuted order, the time between memory access is constant (assuming that each
operation runs in time independent of the data). In other words, the execution
time between memory access is constant, thus no information is leaked. Then
also the overall running time is constant, and no timing leak exists.

Other side channel attacks More involved side channel attacks, such as power
consumption and electromagnetic emanation, are outside the scope of our con-
sideration, as they depend on the specific architecture the code is running on.
Also, they do not seem appropriate for the case considered, as an adversary that

** cf. Xilinx DS858 and Xilinx DS335 specification

has physical access to a machine verifying the correct password typically has
easier attacks at hand.

5 Final remarks

5.1 Statements

We ensure that we have not inserted, and are not aware of, any deliberately
hidden weaknesses in the scheme described above.

The scheme is and will remain available worldwide on a royalty free basis,
and we are unaware of any patent or patent application that cover the use or
implementation of the submitted algorithm.

6 Test vectors

In this section, we will provide several testvectors. Please note that the requested
list of 28 x 2% password/seed combinations for meaningful cost factors will take
a very long time to generate. To do this, please compile the included source code
and run the program phc_tv.

The format of the output is similar to previously used formats:

$<seed>$<t_cost>:<m_cost>$<hash>

where the cost parameters are represented as two-digit numbers and the seed
and hash are in hex-representation.

The output listed in Tables 2, 3, 4 and 5 was generated by the phc_demo
program, which is also provided as source code.

Parameters: t_cost = 15, m_cost = 1

Input Teh quick brown fox jumps over the lazy dOg

Output : 1000(000)$15:1$114495a461ae8b1500e532aa7173bb26e1a43a2e06bcee934a2d9ch714eed262afdb600£df01677£8a300a1cd30eeb8d33c0Obdedbl1698¢c213e3a2a202¢d75e
Output : $0123456789abcdeffedcbads 76543210815 1$e0b0218195ff7bec008baf8784b361594{{8133357e05e1Oe4fd976cSdas3235e4fd9a75546d84657263ead1478164b4d6b6389a1dc6371705bbd342£281d51e
Output : $15:1$ dc65631a68bb7d3b241ed8c52dfa83e£539df 76a3c0a877aca090 273c7bE £06a28e3b33 0660681a606e5b
Parameters: t_cost = 15, m_cost = 1

Input : The quick brown fox jumps over the lazy dog.

Output $00000000000000000000000000000000$15 : 1$ca01d815190243e9510325124b419£b00d1929850£81c93829e0b58c8e37361c10b6572ee412d5ab0a573a35b66de3070c868c144c576ac95610£d4460e9c
Output : $0123456789abcdeffedcbad876543210$15 : 1$1467b73b0ad8beIbeed57e3b7388ad9d 17 ca2b700e86dda38522bac2b59ac26d03f fadc9074528eef cbeb31115a5f17222d2639eaf 68da22f 1128b2d8e2641d

$: $15:1$7087092961£3b2a870828b19cf cc3be3d2554dalec21dad6 7££418a320e9a8606a1539439623£d524c049£666£32d0c8e6d02080729£76094d0531df
: t_cost = 15, m_cost = 1
The quick brown fox jumps over the lazy dog
)0000000000000000000000$15 : 1$8729969794ca741f£9c88ef6e394a61aedb20dbe407d464 £a653eb03e5818314e636719c6£65bc88981057¢082a48c2190£776b91eaaeOcf5led
$0123456789abcdeffedcba9876543210$15 1$7b7d64c19623e7] 20602d5eb6cf28334fc320c863c26c1b31d87d0dalcdb9f7950ad8bebe9c9ab49928a2b459ab945f52da2b633221d0cf9affb601c
$15:1$1b46cbf 44461552925e92bdc54661004d96df74f ce379a8fa8462a4997fa248c324c3161e47ad19632bb1196481ab01e2116d2fec62c79aad22753a6

: t_cost = 15, m_cost = 1
The Quick brown fox jumps over the lazy dog

: $00000000000000000000000000000000$15 : 1$7£b48bbfbb6a75£bd739b557 7722e59269a529869! 9087490985726£b86df005da530a7d1£577cbfadb3blb 4£5c0. 0d29c2
: $0123456789abcdeffedcbad876543210$15: 1$65£20de58609e3£5852e2bb7efd6cadc59385ed6b910967224de36e4706a08592796f7alaf8d89df 1847a845bba5257879426a51d7ea8d0fef 6fe91ae98a0bss
: $ $15:1$44779eac6ea’f12860e60£bc26df £7c1ff48fea9380299f ecb8992dec8400bcae20fabact 9db22f9e42f fIce258b2b0910a72£6 3b00 8060b4b218
Parameters: t_cost = 16, m_cost = 1
Input : Teh quick brown fox jumps over the lazy dOg
Output $00000000000000000000000000000000$16 : 1$65e06dac84a3da8b58b69alc742160c54037c84da975eec24f1cc848bd08362a99b8a06d056ec34257a321bda2f eab19a00c35b4c6fb2ed10e0b91£80246d8bb
Output : $O1234567895bcdeffedch59876543210$16 1$47fecdd92c8cablalfca7fa7d5fd446£213£33905c8669c27c6cbfba2681e56db5faf201c5ee62b95£9696ba6241a7dd8b7e8591594fc5b35a507fe9c673d9ca

$16:1$3773c5483a204d5a0644ccf3bf c8890d53bfalc877bbe29553e57a3aceal79fal18fd4 5 £340bf8699. 0e07df7d9a172eedbed 7641135

t_cost = 16, m_cost = 1
The quick brown fox jumps over the lazy dog.

$00000000000000000000000000000000$16 : 1$c784ce408ae67£d285a0ce35705dc6663b699f cbb03ed7cleca32b702dadeaf2b16b5d4b4c9e53e336£d86801e0b0174e409a123b402f0405233dc9cb58b0938
$0123456789abcdeffedcba9876543210$16: 1$25£004057a3142c24562ee526fe4b02b0dba62000433bc99£5¢7bcbdfd720856d3b50d89ea96b5a864£53082b0652dcd21d2a9ef01ad093a460008c2£8d8df9b
$; $16: 1$ac594b516£64baf909fbd83a074fad85e3ecb2bbee0e075eb22afec99577af70c01e2eab65£770b6702d1389944d2e2b41e241b55620164a39326d508ee313090
: t_cost = 16, m_cost = 1

The quick brown fox jumps over the lazy dog

: $00000000000000000000000000000000$16 : 1$8f£883aa95752dedbf 62ac6fef24dc7a4028d55478f fe739ec05b241c94948a783c01ab52£766039694e3a358a4c91d40b1£7£64f 1fe4a93cf55431b5726ad5e
B $01234567893bcdeffedcb59876543210$16 1$159a8b2395dc575f eebf8783044483288901c95be30£d925cd5bblabea7504bb7a228¢c24e500d70ce59a0fc076c1cfdabf2a8179189£848746ddab0fdbd1b25d
$16:1$458db1cced4e011eecd281880955acf6797586faed20ef3589a030957a08be6b05d73c434eee7a2a840901ea0352992663b0db6a8f2db585dc3687dad5878ef2f

t_cost = 16, m_cost = 1
: The Quick brown fox jumps over the lazy dog
)00000000000000000$16 : 1$e41a8a102dac7a8ee2b8b9a37 3£ dd8a230d3c02bb9092aaab177e0a4051c50036£4426b264d39720259bd93348ac7 c72b625£ db5a8df5bfb856bE 1480310337
: $0123456789abcdef fedcbad876543210$16 : 1$17585f cebc3bi5e9904a08£d771d0db19bte74a2f c386atbaf9dle70ffcbel16dba5debeedd90Tb277ecat b 36053bec2c01ed27
$ $16: 1$8773¢25937d828eb2b30ca4031b8cada72131b8861f1ae05b15d59988e5768ed1ab73540dfb2cf3c221£a577c8548e0f fd61a05da81fe23e456a343bc81c908
t_cost = 17, m_cost = 1
Teh quick brown fox jumps over the lazy dOg

)0000000000000000000000$17 : 1$3994d3a1f 1b8e8cIT892e15cded40£87879193b66£6Tb095A36e61718264e9eb5caTe3de537aecd1e89£516d631735264304ec22fa8830134bE57a77303d034
i 80123456789abcder £edcbad8 76543210817 : 181733568 1££a36548008E0ebcadde0ef 363804731a23190614b38b414b57dccco3C661570dc1de44d8264a60863063acc04d6aacB4461d650030b4765¢238b848

$17:1$£90672230299922 48¢613£857229¢2d5b052323ed84c2c0f 9ec138c25bdded8edcbbacd2e4df 7cab51af 9516bb5819b84£7e00dbi5972f dd1£2£dd
Parameters: t_cost = 17, m_cost = 1
Input : The quick brown fox jumps over the lazy dog.
Output :)000000000000000000$17 : 1$394441cc7£1222521e81cf5aa2d5be04b9abl95a3747a497402e4c3d6a86£ 23531 £582d31e0aa22e248970£3a40637e9d3cb818c4 1581 c8d4bd8ad1fd23c3158
Output : $0123456789abcdeffedcbad876543210$17: 1$0620£a8b£893d08d98ab07324e6d8d17c4009d5ed6c093c3f4a1bbab9758beb2f 2dc26761 e638def 2679d8a3ef 439babe3342f20e49c9eb26234e06b7a1cace
: $ $17: 1$e8540d6326e6£262293c0af90b86937e29b18cdedc912deef557126b68b676baabcacdlel 19dadb292£1 35ab4b8082efcec 77a

t_cost = 17, m_cost = 1
: The quick brown fox jumps over the lazy do

)000000000000000000000$17 : 1$98c5c1ef349c231841 1fe30254 8 0c169597412e2c48£42c9bf86c21£5c924e0d0e88d7b786£4bal75c3ebffd04d21e0e34596406078917
$0123455789abcdeffedcba9876543210$17 1$fea87c4a381b520e66876246202a3b8c7bfb79c79b1c15b686£76c78c3d6e2bf6a81600£78c5cae34318d49d35b77d8d26048d4f fe8ed574f8e56a5495f7£943
$17:1$577962eb40181e1d ba37 02da6d27ebdf0b2616b859717£61238fed5£b91c99c60df 7adeb549c545105£7a26c23c1d7a3af8e591e0830415bd3

t_cost = 17, m_cost = 1
The Quick brown fox jumps over the lazy dog

)0000000000000000000$17 : 1$778be 2737 1676b014322c6f £7° d012ec8fbd480a0b3cfcaaladf63dab15e8c116ebd 7cab831b99bcab: 52106452
: $0123456789abcdeffedcbad876543210$17: 1$c1b51162b8f5a8e815938c5b15088e94eaf9dc1410895711068397e5a809409228548841edb769228984893602af548e1cbd807335ca93ee23ad78acf77bafch
Output : $ $17:1$22842c832b6847¢046619£54e851b989bef9a768fdcf 128234ccal327a38714623af cd4be226bdbf718de48fd6£fb329a0bb13cbcb1010bcb12¢89¢99a327b80¢

Table 2. Sample testvectors for multiple m_cost = 1

Parameters: t_cost = 10, m_cost = §

Input Teh quick brown fox jumps over the lazy dOg

Output : 1000(000)$10: 5$1b4199260£4b15730799253350c4a2b8e4d216££2d820635¢7a4076576cEbf 458608e77060c8E399efb83f cf0e2a72fe7426d337cebd51ccd85ac5880c0bbbb

Output : $0123456789abcdef fedcbad86543210810: 5§60ed729¢1713be9e662081626878b947d4cT569¢2126T5068b9ef TbeT61ac22367aaf d4alf 1a60e2653a5865b40a8098bes 19088722b2932940489042087d2

Output : $10:5$d38£ 1d123371db95bb7c336d89ebcOb79c05e170abdbe625ccae5£054£6d70315c87£3bEBa0act a39c35174bat93d491355eb5£384811b822cee9562f 2beds

Parameters: t_cost = 10, m_cost = 5

Input : The quick brown fox jumps over the lazy dog.

Output $00000000000000000000000000000000$10: 5$111329367d4b4521145af, 567e3c2b12£28debbSe3e572aa7b272872531e92bdc6eadtbi6edeee391cTbe715£247¢363148d59£ 7a016810195424624

Output : $0123456789abcdeffedcbad876543210$10: 5$2£29a614354£6cd85843ae67a7a27d5c05b2e8126b1d6237ef 3c6e06d594b04594894f 15d1b5831a7ed783f 19b445249£ 3bb0389e062ada24ae5b7E £ 764cccl
$ $10:5$ 0755ca543£6b706£0c93£83f cd6de25ccb6e63d719£8546a1b06dadt 13dc4c628df 19c2badfba298d7e0502¢63bc1aTbabt eeBef9c7dd44234e3cTed32

: t_cost = 10, m_cost = 5
The quick brown fox jumps over the lazy dog
)0000000000000000000000$10: 5$042c195d87f3cal2eba8211095£a8817052027£618e3e822a73bf7366cbf1d0d70a17de67b4124311be6380ec268cIbf004342231f7a8bc1fad95ac3b40ead6d
$0123456789abcdeffedcba9876543210$10 5$6b673833c20dce13c968d222a10e57a59cf£9124f194efb09cf4b8ee294235£725d9fd7ab0761227d74cdf3c0324b3bcce84a58e35¢c1c9dedad848fbeda70899
$10:5$fb62a345! £45754bb2c4cbc89a7e5105ae73a41e157eb204e3£91249693e017471£871525dd5006cb1bbc7156caa8936ee1d954e2c89feed75316b9ff£76

: t_cost = 10, m_cost = 5
The Quick brown fox jumps over the lazy dog

: $00000000000000000000000000000000$10: 5$25c75bbf 2369£b8e2c0e0bceat003b2eb0adeb6796dc8d8a9b1911c78£e060b663C7282c74c£99a3871d660bIc6ae047749e70£80b4344edTe323a22a6eeb2bT
: $0123456789abcdef fedcbad876543210$10: 58722282 7cfd3ccdedcedde13459Fbd21e65edef cecb87c5c8b6c5ea83446b344cd2b382d40F4d622922852729e051c953beabab186688a83a1 1ef52ebadabbs

: $ $10:5$2007ed4al1c2d94904c9fa923bb1a05fb96e9ef2c720ef c0081ac298a4c730£7£4474e6b59012f4£970afdfb3fe9al2c7b9a74ddb797b59c8697ae0bsf 1884106
Parameters: t_cost = 11, m_cost = 5
Input : Teh quick brown fox jumps over the lazy dOg
Output $00000000000000000000000000000000$11 : 5$8c6de4b4 18933bdbsa2b882d225e96ca37eb5b3 £50 78£e07: 11fad7df10eb908465bdc1370cf3aa58598c88d79d6661d9b95e42ae32
Output : $O1234567895bcdeffedch59876543210$11 5$21£58def934627e1e19c573bb2b4f2b4b6c8df878e12f1907ea935ee194033741a416d63be405168729799d4£753379£bd4d12f1673587e61cd3db856e903e19
$11:5%$4eadf c3b00f3bb82c1226476cb71b530b891c47879c87b246df6aal3c72495f6d685f1d7cIff2379a89e1e9 53784079083eda2cad 7494043

t_cost = 11, m_cost = 5
The quick brown fox jumps over the lazy dog.

$00000000000000000000000000000000$11 : 5$1b2a70c689£793de7a3a32f£e051733a6bc98c82fb5fb7eadab38163ae3445fc1d7c012bf6176458add4£597be94c45bd3c629db8056043a7b99ebf0c25271e0
$0123456789abcdeffedcba9876543210$11: 5$2be5b1dc6c292d1990cb6£646228c4ae756c1d8117acababdf 78£d9244a00e465d29c4455a896d62ebe9f09beb0f0891a07a46d98f2ac93015dcf376cb7e7dd3
$; $11:5$0c18b345 78£a9621f1a17bdf3641bbd516ddfd670449d0c6£53a91b9b03f2cfe25393e56b69229f3b8aed19805656e235ea7d5c5b6dd899eefbd72035d263
: t_cost = 11, m_cost = 5

The quick brown fox jumps over the lazy dog

: $00000000000000000000000000000000$11 : 5$ab6d8773078abf 2cd7d2e8a69e3£850268e06e9faf f9df02cbf 7ef299a4a0c0d4£328b20041b1b1e25282eb6e88b97£78e9f345a6117e9e94af35eef3d67371d
B $01234567893bcdeffedcb59876543210$11 5$16££85274365c3c97342c5! 4dd437e96e24d1] c1a8e1909b0f4cab631 £a97431£3c5a00bf3a7b93b db2fdOcc
$11:5$788ed5374c5552647015fda7e9: 9283dd9cff724b7f7d6e4269ade3d665a7£65236f cde21bd815e9d592f7b68a5e88e7785bdef7c1a9439a4f23e05ad7b46a

t_cost = 11, m_cost = 5
: The Quick brown fox jumps over the lazy dog

)00000000000000000$11: 5$398£7e9b8756baad93244eectfc09f£22926af! £0d98bf686b4d0a03de751b751e4afe8bO! c9d. e5b26d714b3317804d671234f58b5ea9
: $0123456789abcdeffedcbad876543210$11:5$46efa3039947d2140986b87af275b4fe51809¢255fb7727cb5dda236e801c69db9583472075635519b0efc09cf7e7£63c3399811081673a7307bd3bdb96ac349
$: $11:5%a6e2ebe2f5fb59d6e761e56cea942333705£6149acdcfc570a904165dd6a36956b6ef553d4870701053d91ee6876£060b93300025a5ece23a75eeee9c9702c1d

t_cost = 12, m_cost = 5
Teh quick brown fox jumps over the lazy dOg

)0000000000000000000000$12: 5$b2a8f5c30£a48f£210e219e431£61£6£6ae0f98aate3ebed4ed53E1081b7cd94622421ae366173737a0245b06cd115a86629b398a0c0b0E £ cf c7ad11be981858
i 80123456789abcdet fedcbagB76543210812: 58aa3abe18c5e7e361a4205302264045659022bd2966550ceT4a e 1deT60CTC3B63877720c240£07 2674dd22dadCT7e2£ba3E 799dCB602bB66ET Ib552t 1aB92aca
$12:5$bc22ee2bdaeact50908338£bcbleaefab7b7aad083edc225d9857£e84661a3966c3c03659ab937a72090£b313102£2395ac£013872e71686b7b6ceddf048e£69

Parameters: t_cost = 12, m_cost = §

Input : The quick brown fox jumps over the lazy dog.
Output :)000000000000000000$12 : 5$44b2963a0d9£b862c3bEa20c4bc34e21439£7d20576d16d0047a5b6bdac681a9765434£9c£5754£807b 44647550 0b0c6bef03b24ce34c9863
Output : $0123456789abcdeffedcbad876543210$12: 5$d602b526abb0f7541e49b928838bc4055167bb5890c42d6¢19acIc5E6c250620£741e91d52c37cI788a6a702565bad48af 22£90e389£ £b430958db361fe1bIb5

: 8 $12:5$7b46de446d1a2ae8511141a6620e4316fdde1180456d957527ab643bs 1b90b64be03f £2f e61f cadb2fb2c4bc365785471045c00380c33206a325617e42d6det 1
t_cost = 12, m_cost = 5
: The quick brown fox jumps over the lazy dog

)000000000000000000000$12: 5% 24817 b81£d2dc2226b7abb2b024671701e3b2f6ba7c3fd9f2d0bb58d7b2e98bec29467d590e5d1£371050c¢700711a452bb19¢c195a709d9ed0c
$0123455789abcdeffedcba9876543210$12 5$7198bf c51d32abf7a8893b3ad7229d98a34efe656c62788493a688784a13£d02722ef19£3873dalcc7753084ec78f65c9a45e259bc45856c6828cedd065eddfb
$12: 5% 723a3745ce463d312c885efaf1503b1e84c80740804867c824891e9503d9faa2e28694a8b95eb2c7bedbafdcef06cale873b861795e11031034f2811dca

t_cost = 12, m_cost = 5
The Quick brown fox jumps over the lazy dog
)0000000000000000000$12 : 539a0c560£421£6a9d0b7201£dbe0404d980b530cd0a6266a18d971d0f Tb6e3a93££d1499£56a879329b8650010c£604003bbefd3a012c319edf 3bc8a93ad6b676
: $0123456789abcdeffedcbad876543210$12: 5$78467£47960b90eb740b133c6£81b080300e4b492a2f 1eafa0986659186c248b357£c46b61aaal0c2b3dd8ba24466b7113eb126243a7d23e5ccEbc53603a511c¢
Output : 8 $12:5$£0e6c5b774edc3708£b3£695fa9%f12b90bdadad0779eccda62d6b0a0cac06b948 e 10£448£67c636595b2390£ 3cba129£89967d3402116263e4ceT8e56bE672

Table 3. Sample testvectors for multiple m_cost = 5

Parameters: t_cost = 5, m_cost = 10

Input Teh quick brown fox jumps over the lazy dOg

Output : 1000(000)$5: 10$£a98e8feb287a607adf cIc6alaa05d7b13dade8I6bed6c12cbbeba2edef c815b8ddE0ef08c67cT2b75a6416cad0974c90a3336cbb96434c5ca2e2c70a3e0b1f
Output : $0123456789abedef fedcbad87654321085: 10§32¢5920b062c9211664270¢5766a88606032228120252604400dbd0a08IecO1 321408142241 46996bca17895368011de1d010c5bd0 d0bed629508£ 37206
Output : $5:108 e69ca0f11d34 5a6e1277835a7c2160c2ebca0867710097d05d4134b9c5a5c43542115ecb34692342a79078cc1b80e£7cbab79be9459295bd9b281
Parameters: t_cost = 5, m_cost = 10

Input : The quick brown fox jumps over the lazy dog.

Output $0000000000000000000000000000000085 : 10$23b5d7£598762cdefb555c7533c0235be0b600c5405e42¢ 1 ca75dcde3eadblc266b82318a61dd4733bt 75ad02466a6310ce00780939bca2f45eb37231888b55d
Output : $0123456789abcdeffedcbad87654321085 : 10$4eddb86e96a8c6d34eb1902b46a0c6c4dlc6£26d9fb2c4eal7dedas586717b4adTb50d30d6adf68492de5Edf7028c7fa7508acdc46al2d89669ec5d82b98a9

$: $5:10$d9£0b3 105c6d6478b5980d5e5a51ae46£73£34fc0616a3bc7d4e2cd9abd3e15af4592ef80d4061bccf815b891d394402ecb6c44fbef0859fc699b7cTae56
: t_cost = 5, m_cost = 10
The quick brown fox jumps over the lazy dog
)0000000000000000000000$5 : 10$1475f c2bcc883deba685c15defb576ef9f f4a4£7c65170d806£d73e811d001ceabs b 5b0722a2d91c060620bede13790bdf1ffcc2ad7949ec0265fd
$0123456789abcdeffedcba9876543210$ 0$6a2df69d31fclaca0723e7£a6c7729£8d97d0b9eaabcf968a917b62661c2477001df3f5e4f4eb80bf4cd4bf912033360ac606111c3e8cefe9e0330dd6e091892
$5:10$fb7e62a0ffa01646aa3b2bb251e2628c0bbdec0f9e219dad27342b104ed918f91f8ac6edb8ee5d81685cfd8f705b232021519719b49bd000d5144c4544ac83b8

: t_cost = 5, m_cost = 10
The Quick brown fox jumps over the lazy dog

: $000000000000000000000000000000008$5 : 10$85c985ac8809c2c9214542ead3fa2eb11d2d511a08992de826b2b6cc2a10ae92cc3bes5df ce72a939a2c14bacd7c8b5ad79adc16531382135ce3755£599£1031
: $0123456789abcdef fedcbad87654321085 : 10$669bf7a93c66de25886941dd45128464138c812ba278c2c3d3eec050263ba0at7399c63dbdadd7e768418c554f 3d173c90732693ba887451aeT5af e06b2ec340

: $ $5:10$4412d77476c75a32b60b13ce6662a886eba21d0b814674824df 2e1e2c043268fe71f2bal2f429b14bb6406e9f322bbfa053ce79fabaadf c74a037572fb43bbd2
Parameters: t_cost = 6, m_cost = 10
Input : Teh quick brown fox jumps over the lazy dOg
Output $00000000000000000000000000000000$6 : 10$e0638a6143fa612274b7d8525d265b10491c631a7£329353£43963f3dcab40£8b2c3bfabeed483 44 Tbecd35bedbc796cE 48da31ce4d4cd639
Output : $0123456789abcdeffedcbad876543210$6:10$67af23812c8c59¢52121821876b3a0323fbb7b72693d84126b7bf 1fb45e87d50£982e2167fdf aefbd56549bc128af254e4da42180cec4f87f31ef4b5d25b74d0

$6:10$1591c133c6c7£33f62ae17da8c412afbd8f6c2676e24ad7ae80778ddc88429c5bdf55b67c7a2b56e6994510ebeed1392477c4f162a708825e968ef99cbb14777

t_cost = 6, m_cost = 10
The quick brown fox jumps over the lazy dog.

$00000000000000000000000000000000$6 : 10$1400efc367636700a69eeade740548aabec17bb963e9b4606dd6001d0cd31acE5b8325afb9c2cdb980d09cf7b261c4£7592d90c47319845ce5ad528ea48640bbb
$0123456789abcdeffedcba9876543210% 0$666e£422a9d677018929454ca333239cc477d9696e0! 45££3364d 1ba6330ff2b3eel 08186417f82ade1e98c756b3acbf431687c649e83819
$; $6:10$cf9e3a8ele597eele122a32c81953274e3a95b2c0f 201 50ad718b0c432d2f86ee2b8df3caebb191e32a68dfcd990ae97e2711702ab652ef4d8e7
: t_cost = 6, m_cost = 10

The quick brown fox jumps over the lazy dog

: $00000000000000000000000000000000$6 : 10$4db8c549f ccbd7a179b73d80027c45f218edcef£54530fe0aab647bc02d8dcae03a854f44cb66£2e69b9c007eebeect45a97bIb6a669a42ac28bfd28528a9dal
B $01234567893bcdeffedcb59876543210$6 10$01261c37a38571ccddb86d97e8eb24££3118dd4fb799f96d8673£4813£5fd29b16a7645acad42131ae7d4f£97e96e062608aadeafIb71cae340687f7fefc198a
$6:10$acc4182601ef437c7ed6300550d82£336827d0fbb9c6f088aebf 79557£1b3172fe2944bc1072921c0e83866a1b32b0f6aalc6fcadlfdbaccc64ff528ebd3d8es

t_cost = 6, m_cost = 10
: The Quick brown fox jumps over the lazy dog
)00000000000000000$6 : 10$c3e81e51125c5795 ceeb66567826191c824f 13£ cab3£2464b3503105b81d4e05d9af90bacaecead7815173aaaf 9552be3£d56ae0477ab95d5114cd0433£ 36289
: $0123456789abcdef fedcbad87654321086 : 10$1a71£28676ad8f4d63888991e47458 cef9632b7ef5cbf30b7d9edac0d6eal4031a0f40f fac6478aead8151£a908bb9e14d32717a0cc215239eTec792c£4a99ad
$ $6:10$£7bc33ef c3£47498¢33f ca3e2f 1ae838a6810de3caald7c553631841e408ad720c83550dca23eaf c236d99d488080c4b9a663d71204ac015662b79074cc1982ad
t_cost = 7, m_cost = 10
Teh quick brown fox jumps over the lazy dOg

)0000000000000000000000$7 : 10$5b9d21be7cabdb6c23b6alctb65ec8077e7a9b355b388168ebcet6d92a9507cb828b74d03b93e52bb7 cbee3bdd51062f e75b1ce14df973583db3c75ecd8b1535
i 80123456789abcder £edcbad8 7654321087 : 108£d81b1c33LIOBEE ched6E7a732dbEe031d9L737982154c0003de32a204311981983c1 5 e4dec21 9261l 2231 14528410431 34aad4bab 1bbde3ac6e8Tad08 cas
$7:10$205bedf903233a096892d9783479cf £a2874d7£091d4bdf 17399£2032696b0896ddab51 71 b58382543a4e9627e7adf 7828e39ed112d5635d984767178a533bc

Parameters: t_cost = 7, m_cost = 10

Input : The quick brown fox jumps over the lazy dog.
Output :)0000000000000000008$7 : 10$844c374bec1ef5917831c738b18d676c9063ed018282b357728bc74d0ef55 c53a12c5d418431£1075682c££6db1d5de6958c36£23834bc0217a1d33d3da0b8al
Output : $0123456789abcdeffedcbad87654321087 : 10$6710£0£208e8104b5952f £ 7be58eeed27ab351cIcba368c4be004bd7 cb44daT0e9a3739e00£58358£a3163703a40063911cEef65522183£82eb697691£ 756686

: § $7:10$458715aa62abc0767ba9f4efdcd4d5c4c9359f4caced2ce8f 1bbed65adabb240a66851578a2288c404dblc4ef6ed5707fcc8831945aaab1aaf4b16a80fc352e1
t_cost = 7, m_cost = 10
: The quick brown fox jumps over the lazy doj

)000000000000000000000$7 : 10$935c283c476bf 1a1579dedcaf2696ea43095fc1£536b7d47£132da 0db51bf 0ec7adb88473b69024a61eb2d09£36bb3c19£838b91859e13a
$0123455789abcdeffedcba9876543210$ 0$28f4e8569£8231ea54897¢207ba7aa9c69a524102b11b92c50127d93ea09ae5e18de5094ce097b6583db89cbefae7a3edd401668efb17a171d725bfc0378e3b7
$7:10$0e514d8570b2eee836987e1d19f5¢2¢2928dab776ef490eb43e28873df 3cf1a732a4d13856d13fd9c9340a9c9e90cf8faceab24£96b9edabbb7c1b951£928bd58

t_cost = 7, m_cost = 10
The Quick brown fox jumps over the lazy dog
)0000000000000000000$7 : 10$b093a65f fa85c18a357c0216cTecet42£7438520bde79109bbate0b1d8a0478f£415c85d63334c6e154566418888d896bd96ec0f92ec129389f 5bac24423c4Tc
: $0123456789abcdef fedcbag876543210$7 : 10$760cead96193d665af62c46al1ff1ebs dd1a2af. 0550cdccae596£bb235d62f 1£108bc66£bee93217bc ££e8124£3cb2737b33£££a50c908£49
Output : 8 $7:10$59f ecba279£016£54235d60dc543c1ef3e18752c25a06b924607a97bb66898728c17e8fb987abee08abcalbe2c55b49224c66dcd56817787b9ea890d4ac023b

Table 4. Sample testvectors for multiple m_cost = 10

Parameters: t_cost = 1, m_cost = 14

Input Teh quick brown fox jumps over the lazy dOg

Output H)000(1000C)$1:1484ceb63b51cd1bbbead6a7347cd9dd3b8d1e0£31d600214249ef17c872ee3a18847e59503c59fb6bcaladd84b2ccc3f7625703e476e07d6690951f1c619cd9a7b
Output H $0123456789abcdeffedcba9876543210$1 148$cf4b36b561374a45782f faa8e7a20£52b77897317c6f6cd5a1555a5d1ecd78cce345def6c76494c857¢a7£8a004018977b5238d04a3718a70f7d565e3de26504
Output H $1:14$0982c64£4730c29dce65c48155££82634c4f0f90e215415£9d67a5£829cd00f ca44ba84681d5f326256e71ffa43b05727b923c9b015d463£766910ccdc9044d54
Parameters: t_cost = 1, m_cost = 14

Input : The quick brown fox jumps over the lazy dog.

Output $00000000000000000000000000000000$1 : 14$c80910adee6a249b3088£8bb63578bbca266259a985cabc6809a26£0a60994076ee18b649371£5073eed9f9b37864204fe95dba7c12ff6423c34cce968a2c5dd
Output 1 $0123456789abcdeffedcbad876543210$1: 14$76b0ebf36a1025cb37ae01a813a4a4b60b3a40b09e22f d862a3b6062a006e88b04be65046b8bf cfbOb690634785ac0f99dbba032d8df0cad2a6e5ba73bd72b2f

$: $1:14$cd78e1c22c4da74264f3£1c7b62a0772adedd873d40716belcb50d5e37cfbabd3856d7dfdcae3bda8a28c6376788db1bcle2c0a83a96b5c47ffb542d01a65b51
i t_cost = 1, m_cost = 14

The quick brown fox jumps over the lazy dog

)00$1: 14$e85! 44 b836e19321ca904b502ac8e0£2e7£074276d12290ec9ded05£55de33957e53ed4343e70ae3532. 46260ceb81b5b45750590bc15£14b0
$0123456789abcdeffedcba9876543210$ 4$80b3e5664c8eb60f5e80ccf8385361878a38e993fa67bd524c831681727928a7756074ce67845£300c1d0f3d323bf£0d2ef71a794d11c0d8043c61ff2c7954fd
$1:14$b36107d90639¢2a25d40a0073bc9df5ae8c59d2f349044b1adb54ac738400: 594c2198a81520d380922e214db18578ed75ab2c669d0bde52f5031! 2

: t_cost = 1, m_cost = 14
The Quick brown fox jumps over the lazy dog

: $000000000000000000000000000000008$1 : 14$8bb49ccd9ct 1£787c9d20c02316c47£5b9e033a88c77cI6e38e07177084919b4435a1478531£4e£51742d3£3£b83119e252e90d32937£857acaa’8393517a568
: $0123456789abcdef fedcbad87654321081 : 14$c4150£dc185b37 caled3c6ea3253924a9b61 31 cB8182813c5c1acbe39768ee42f81d39827 141 4e2af 5aecOb5870d8e47952a0f 1£0a952ed48e6ad8bic3689e1c2

: $ $1:14$d1c2c6e0cc44bi0 07740bf2e018925£78ee30630e18c291£9c716b2d8500d192ed6e054dab92813767d098£11d654cc2365303690016ec9d38293¢c
Parameters: t_cost = 2, m_cost = 14
Input : Teh quick brown fox jumps over the lazy dOg
Output $00000000000000000000000000000000$2 : 14$961d9ebfbc56692a78b: 2d8557d981ee48: 4eb4f9fe195361d6b78d9292ad61b300d996ed4400c0364580869eact. £827988: 57c
Output : $0123456789abcdeffedch59876543210$:148e714c86£80c58ab537£400a368ba987416176a239d017fa842c15b5a438e76£77012f26b04da1f3b02e802f5d3d3cf81eb3590ac73047a3806812345137cff1d

$2:14$40afb9ea973eb2c1ddcc03eb575d7b3a8e446ab3110706cbcfdc820d16debe7e17b1fbb2f03d8ef20eedde72c0bbdf 2dd0b76d95cal37b17afele2c6244809bab

t_cost = 2, m_cost = 14
The quick brown fox jumps over the lazy dog.

$00000000000000000000000000000000$2 : 14$42a9f3ef 184e067eab7a275a7dda43857adcd1b5147e1df935278abfd3d2d69731cb2d81163451b9f653911e8eb273d42b48e90c88200d902544£337abb182b5
$0123456789abcdeffedcba98765432108%: 4$8fe04c842d1091226a0090e2597c4b6c14303b245039ea1b021796fa2aa27307c642e77c412d107bal1fde25061a1d20£448222beal95174792d0638cbfbeab6
$; $2:14$9407239a6£3522489c329a59c04706ed94a47cfdaa8cf9885ce625cd77a9d7b2368451e51c7d04fab51666c93054b4880a3c1c7a19836b9e61b121ab383b6451
: t_cost = 2, m_cost = 14

The quick brown fox jumps over the lazy dog

: $00000000000000000000000000000000$2 : 14$e4£2229e6c3017d985c1£7c488ca2e4e339c772a26e72965b22d91e1969796£291942a24f 1b2fa9f 0b6dce0f 6£35e643330ff£53dace99d05acd1979287e738a
B $01234567893bcdeffedcb59876543210$2 14$bc758aabe50£40690eb1d6886d4a29cd9d10a681£b434718f 148cafd25208ccd6244bbe1239d5fa2f cab858b22f33ac2f668d5c2ca07££72¢3d7c64d2a258b71
$2:14$07d5cd41802e053cd112c2bdab2fd10598e52ec58b616e51c52e42ceafab616b1d15fed14d24e29390ac91e37£eb63f04132a4393£5£14d74703283£33c81b91

t_cost = 2, m_cost = 14
: The Quick brown fox jumps over the lazy dog

)00000000000000000$2: 14$096b6£4f191cb86c140102cd07e3aad414ecac49a40e223ef c99e32061d4dbb100370e8660! 36e9e235d42a3dedca2dal£207210641e5a6ea3b7c93
: $0123456789abcdeffedcbad876543210$2: 14$b57516b2c98ee6c32c£24b1359167£3b328790263¢23260d9ed373e235£6ca3869b886b34f6ec8d7ff0fa18d416ec97bfc3b0ddc6e20e438b365e50bdde44909
$: $2:14$69110d775£9189b18826535e4a46639dd93a245851bf8c006816a1f736e4a6e736da3f64e677e64a3fadac7b19b2c748872¢101cf560£0d00ebd4d86e3a9e3c8

t_cost = 3, m_cost = 14
Teh quick brown fox jumps over the lazy dOg

J0000000000000000000000$3 : 14$16174 £b110af584caee53bd589ef 1d99c87d1ca512a6646383e01c1cef cd176£4b261d4106300b861f cdc64a9b6a92d5e06d441c262e0d7dabb31a25

: $0123456789abcdef £edcbadB7654321083: 1487794dddB9BC5C20c7a347216079a07e90b83953a9e8d473621545118c0ccde91d8e0b88b0L7906638379454193192831c332995010a417 17a89ea035 edeTddec
$3:14$0 202226c6a79b7£420£48821742e7ad6c227£a329f cTa8c5ecaabdl3f eee5eb4cbb766d79c5be 241 2bb64b25207b2cc096e1b663370£3c3725c428

Parameters: t_cost = 3, m_cost = 14

Input : The quick brown fox jumps over the lazy dog.

Output :)000000000000000000$3 : 14$3435b6a739b91edbedc3aabad055e0c372dfd79de473b1bf8167395ba0660ac £5. 33004d90£05de1dcadab4d48ceabab75877af8c

Output : $0123456789abcdeffedcbad876543210$3: 14$8854dc201037eaae03739(0e55bd2017b80242e2a855£0848e1c69bf 1c76ecbdbfc841£41901d0eb37ef c88a98396c44b3b509c5849979499dc1acd
: $ $3:14$670c55£e6b90b51c3948£5854ef ee81431c818d40647e£9d8810270314fddad24aef 41 £186c86d21d934£98ddf 80e9786a458574e0453f e9ab17652b10ab6df3

t_cost = 3, m_cost = 14
: The quick brown fox jumps over the lazy doj
)000000000000000000000$3 : 14$0beeebaadadsof 14122a6714c4d75e24540320a1ae6078££49d2d36b8cb526ee88026402ab9cae25ac362047896b771469a21a191666cc7c02d68b02d06a882¢
$0123455789abcdeffedcba9876543210$ 4$ac133de45£75179daaldffd6a6e56e751deeb36d17c2e736ef9141a6157baeb90ded8c904f 18566bcdb307a7bfd67842307cd1eb624e0e05e6be25¢079075c80
$3:14$8c4df609609bb4ac1c90ef1708b069e369df 2e753baf0f c£482707d54353f ca53ebfd2c8407bb3e2192461£0c6bbIc1c582a86a7dd9ec4269cbs8f629££83506b

t_cost = 3, m_cost = 14
The Quick brown fox jumps over the lazy dog
)00000000000000000000$3 : 14$£b956£ c5£9016e18bdcIBcTbc55bc2cTE953ce70badb99b5b5dad3a6d087e93a83158707cfc02262928cd0f3a816£28d3311c7c7£4973284a199edc5c0c9d84e
: $0123456789abcdeffedcbad876543210$3: 14$ec29£7508697679ae2034d240e7897alcb6016e1bc35e40725265¢01b087b55b3E7ccad715d86e176df3c220a36aba2d01c26033£7£700cd819£a19529032c6e
Output : 8 $3:14$b57d6567eb16b819dd9c97£2574fe82e0095¢c055a7b58fddb560a3cIe6c0ablabl251723ce886caefe947bl19edd7c2316357296e347f1e366913e42756910a

Table 5. Sample testvectors for multiple m_cost = 14

