
Yarn password hashing function

Evgeny Kapun
abacabadabacaba@gmail.com

1 Introduction

I propose a password hashing function Yarn. This is a memory-hard function,
however, a prime objective of this function is not to satisfy any theoretical
definition of memory hardness, but rather to be as efficient to compute on a
modern x86 processor as possible, compared with other hardware. Ideally, a
modern x86 processor should be the most cost-effective device for computing
this function. Therefore, it may be useful on a wide range of desktop, laptop
and server machines.

This is achieved by two means. Firstly, this function makes heavy use of
aesenc x86 instruction and instruction-level parallelism, which is intended to
maximize utilization of execution units present in modern x86 processors. Sec-
ondly, this function repeatedly performs memory lookups, such that the address
of each lookup depends on the result of the previous one. Therefore, access to
some memory with sufficiently low latency is necessary to compute this function
efficiently.

This function has a number of parameters which can be tweaked to achieve
the best possible resource utilization.

2 Schematic description

The operation of Yarn consists of five phases. The first phase is an application
of BLAKE2b hash function to the password. However, the entire final state is
retained (Figure 1).

initial
state

password

BLAKE2b

128

BLAKE2b

256

BLAKE2b

n 264 − 1

final
state

Figure 1: The first phase. Boxes labeled “BLAKE2b” correspond to calls to the
BLAKE2b compression function, not the entire hash function.

1

mailto:abacabadabacaba@gmail.com

initial
state

state

keys

Integerify index

BLAKE2b

0

BLAKE2b

n

BLAKE2b

n + 1

BLAKE2b

n + m

BLAKE2b

n + m + 1

Figure 2: The second phase. Here, the initial state is the same as the final state
of the first phase.

state memory

keys

state

AES AES AES AES AES AES AES AES AES AES AES AES

Figure 3: The third phase. The old value of the state is on the left, the new
value is on the right. Each box labeled “AES” represents an instance of AES-like
encryption, which consists of multiple rounds.

In the second phase, the resulting state is expanded to produce enough pseu-
dorandom data for the subsequent phases. This is done by applying BLAKE2b
compression function multiple times to the same state, but using a different
tweak each time. For these calls, message block is set to all zeros. The result is
split into three parts: the state, the key, and the index (Figure 2).

In the third phase, a large array is initialized with pseudo-random data. It
will be subsequently queried at pseudorandom addresses to achieve memory-
hardness. However, elements are initialized sequentially. During the initializa-
tion, an AES-like algorithm is used, which will be described later. The values
“state” and “keys” from the previous phase are used, moreover, the “state” is
also updated (Figure 3).

The majority of the computation time is expected to be spent in the fourth
phase. In this phase, multiple evaluations of aesenc primitive are interleaved
with random-address memory accesses. The evaluations are structured to per-
mit limited parallelism to better utilize CPU resources. Memory accesses can
also be done in parallel with aesenc computations (Figure 4).

In the fifth phase, the resulting state is hashed, starting from BLAKE2b

2

st
a
te

sta
te

index index

memory

AES

AES

AES

AES

AES

AES

AES

AES

AES

AES

AES

AES

AES

AES

AES

Integerify Integerify

Figure 4: The fourth phase. Each box labeled “AES” represents an aesenc

evaluation, where a left input is a data block and a top or a bottom input is a
round key.

state
from

phase 1

state from phase 4

BLAKE2b

128

BLAKE2b

256

BLAKE2b

n 264 − 1

Truncate

final
result

Figure 5: The fifth phase. Almost like BLAKE2b calculation, but the initial
state is different.

final state produced in the first phase. The resulting state is truncated to the
desired output length and returned. Therefore, the result is a slightly modified
BLAKE2b hash of the concatenation of the password and the state produced in
phase 4. The difference is that both the password and the state from phase 4
are padded, and that the counters and finalization flags are set like there were
two independent hash calculations (Figure 5).

3 Specification

Notation: operation of various functions below is described using pseudocode.
In pseudocode, all values are either arbitrary-precision integers or byte sequences
(or arrays of them). Array indices are zero-based. Operators are represented
using mathematical notation, with and, xor, shl, and shr being bitwise oper-
ators, and || representing string concatenation.

The function takes the following parameters:

• Password (in) – a string up to 2128 − 1 bytes in length.

• Salt (salt) (optional) – a string up to 16 bytes in length.

3

• Personalization string (pers) (optional) – a string up to 16 bytes in length.

• Output length (outlen) – a positive integer not exceeding 64.

• Time cost (t cost) – a nonnegative integer.

• Memory cost (m cost) – a nonnegative integer not exceeding 124. Memory
requirement is 2m cost+4 bytes.

• Internal parallelism level (par) – a positive integer not exceeding 2124− 1.

• Number of rounds for the initial phase (initrnd) – a positive integer not
exceeding 2124 − 1.

• Number of iterations between memory accesses (m step) – a positive in-
teger.

Definitions:
Blake2b is a BLAKE2b hash function1. It consists of the following steps:

function Blake2b(in, outlen, salt , pers)
h ← Blake2b GenerateInitialState(outlen, salt , pers)
h ← Blake2b ConsumeInput(h, in)
return Truncate(h, outlen)

end function

These steps will be used separately, as well as the BLAKE2b compression
function: Blake2b Compress(h,m, t0, t1, f0, f1).

This function will be used to produce arbitrary number of pseudorandom
bytes from a BLAKE2b state:

function Blake2b ExpandState(h, outlen)
out ← empty string
for i = 0, . . . ,

⌈
outlen

64

⌉
− 1 do

out ← out ||Blake2b Compress(h, 128 null bytes,
Low64Bits(i),High64Bits(i), 0, 8 0xff bytes)

end for
return Truncate(out , outlen)

end function

AESEnc is a round of AES encryption, equivalent to x86 aesenc instruc-
tion. It can be represented as:

function AESEnc(data, key)
return AESPermutation(data) xor key

end function

Here, AESPermutation is a combination of SubBytes, ShiftRows and Mix-
Columns AES steps.

The following function is similar to AES encryption, but simpler. keys is an
array of initrnd AES round keys.

1http://blake2.net/

4

http://blake2.net/

function AESPseudoEncrypt(data, keys)
for i = 0, . . . , initrnd − 1 do

data ← AESEnc(data, keys[i])
end for
return data

end function

Unlike the real AES, there are no distinct initial and final rounds.
There are two main arrays used in Yarn function: state and memory . state

consists of par 16-byte blocks, and memory consists of 2m cost 16-byte blocks.
This function rotates state one block to the left:

function RotateState(state)
return state[1 . . . par − 1] || state[0]

end function

The function Integerify turns a 16-byte block into a valid index in the
memory array. It represents the entire block as a little-endian integer, then
discards its 4 least significant bits and everything above its 4 + m cost least
significant bits. This can be summarized as follows:

function Integerify(block)
n ← AsLittleEndianInteger(block)
return (n shr 4) and ((1 shl m cost)− 1)

end function

The Yarn function consists of five phases. In the first phase, the password
is hashed using BLAKE2b hash function. In the second phase, the final state is
used to derive pseudorandom initial values for state, keys and index. During
the third phase, the memory array is filled with par interleaved OFB-mode
keystreams computed using the AESPseudoEncrypt function. During the
fourth phase, multiple AESEnc computations and random memory accesses are
performed such that they can only be parallelized to a specific extent. During
the fifth phase, the result of the fourth phase is compressed with the hash state
produced in the first phase to obtain the final value of the hash.

function Yarn(in, salt , pers, outlen, t cost ,m cost , par , initrnd ,m step)
// Phase 1 – BLAKE2b hashing
h ← Blake2b GenerateInitialState(outlen, salt , pers)
h ← Blake2b ConsumeInput(h, in)
// Phase 2 – generation of the initial state
expanded h ← As16ByteBlocks(

Blake2b ExpandState(h, 16 · (par + initrnd + 1)))
state ← expanded h[0 . . . par − 1]
keys ← expanded h[par . . . par + initrnd − 1]
index ← Integerify(expanded h[par + initrnd])
// Phase 3 – memory initialization
for i = 0, . . . , 2m cost − 1 do

memory [i]← state[0]
state[0]← AESPseudoEncrypt(state[0], keys)
state ← RotateState(state)

5

end for
// Phase 4 – main phase
for i = 0, . . . , t cost − 1 do

block ← state[1 mod par]
if i mod m step = m step − 1 then

block2 ← memory [index]
memory [index]← block
block ← block xor block2
index ← Integerify(block)

end if
state[0]← AESEnc(state[0], block)
state ← RotateState(state)

end for
// Phase 5 – finalization
h ← Blake2b ConsumeInput(h,AsBytes(state))
return Truncate(h, outlen)

end function

4 Security analysis

The security of Yarn function rests on the security of BLAKE2b function, as
well as on properties of AES permutation. The hash is computed by using
BLAKE2b compression function to compress password, salt, and the result of
a memory-hard computation into a single value. The compression is structured
such that Yarn has optimal preimage and collision resistance properties with
respect to the password, assuming that the compression function is ideal. The
proof is similar to that of the security of BLAKE2b function. I believe that
Yarn also has the indifferentiability property of BLAKE2b.

Yarn function has certain collisions on auxiliary parameters. For example,
appending zero bytes to salt or personalization string doesn’t change the value.
However, if the function is used as intended, these collisions should have no
security impact.

The memory-hard part uses the final state of BLAKE2b hash of the password
to derive the initial state. Because of this, it is not possible to perform this
part of computation, which takes the majority of time, for multiple related
password/salt pairs (such as those differing only in salt) more efficiently than
for unrelated pairs. So, an attacker, who may want to compute hashes of the
same password with multiple salts, won’t be able to do such computation more
efficiently than several independent hash computations.

During the third phase, the memory area is filled with pseudorandom content
produced using AES algorithm. It is not necessary for it to be strongly random
for security, because the memory is written to during the fourth phase, which
prevents time-memory trade-offs. However, if the initial content were too easy
to compute, this could be used to avoid storing it at least for the beginning of
the fourth phase, when only few of the memory blocks have their value changed

6

from the initial. The algorithm is designed such that an attacker cannot quickly
compute the initial value for a block at arbitrary index without precomputing
and storing intermediate results, which reduces his advantage over a straight-
forward implementation.

5 Efficiency analysis

It is intended that the parameters are selected such that the computation time
is dominated by the fourth phase. To this end, the value of m cost should not
be too small, and the value of t cost should be at least several times larger than
2m cost . During this phase, aesenc instructions are repeatedly computed such
that up to par AES permutations can be computed in parallel. This number
should be chosen to match the number of aesenc instructions that the target
CPU can compute in parallel. According to Intel optimization manual1, modern
Intel processors can evaluate approximately 8 AES instructions at a time on one
core. Choosing too large value for par may benefit attackers using bitsliced AES
implementation and should therefore be avoided.

In addition to AES computations, a number of memory lookups are per-
formed using pseudorandom indices. These lookups are there to prevent an at-
tacker without access to sufficient amounts fast memory from computing Yarn
efficiently. Each index depends on the results of the previous lookup, so these
lookups have to be performed sequentially. This makes the evaluation speed
highly dependent on memory latency. At the same time, memory lookups can
be performed in parallel with AES evaluations, making both AES units and
memory fully utilized.

Yarn deliberately doesn’t take advantage of multithreading. I think that in
order to utilize multithreading, a higher level primitive should be used, which
will compute multiple instances of a function like Yarn in parallel and combine
the results.

Evaluating Yarn on GPU would not be very efficient, because GPUs are not
optimized for AES evaluations. Also, if m cost is large enough, the number
of instances of Yarn that can be computed concurrently on a GPU would be
limited by available memory, making GPU use even less efficient. To compute
Yarn efficiently on FPGAs and ASICs, it would be necessary for them to have
both fast memory controller and multiple AES units. However, a CPU has both
already, so making a cost-effective FPGA or ASIC for Yarn would be tricky.

6 Disclaimers

This scheme and the accompanying code doesn’t contain any deliberately intro-
duced deficiencies or weaknesses.

1http://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf

7

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

To the extent possible under law, I waive all copyright and related or neigh-
boring rights to this document and the accompanying code.

I am not aware of any patents or patent applications covering this scheme.

8

	Introduction
	Schematic description
	Specification
	Security analysis
	Efficiency analysis
	Disclaimers

